Development of Silver Nanoparticles Enriched N-Dodecanoic Acid as Energy Storage Material for Thermal Management of Electronic Systems

Article Preview

Abstract:

Phase change materials (PCMs) with metal nanoparticles have gained significant attention due to the limitation of pure PCMs possessing low thermal conductivity in various applications like electronics, electrical, and thermal devices. In order to overcome these limitations, metal nanoparticles, mainly which possess enhanced thermal conductivity, have sparked considerable interest in dispersing the nanoparticles into PCM. This study focuses primarily on developing nanoparticles-based advanced energy storage material for the thermal management and cooling of electronic systems. To achieve this, thermally conductive silver (Ag) nanoparticles enriched n-dodecanoic acid (SeDA) PCM were prepared with a certain mass fraction of Ag nanoparticles embedded into the PCM using the sol-gel synthesis. The morphology and crystalline structure of the as-synthesized silver nanoparticles were analyzed by FESEM and XRD, respectively, resulting in the highly crystalline particle size ranging from 20 nm to 100 nm. The impact of enriching silver (Ag) nanoparticles into n-dodecanoic acid revealed a noticeable increase in thermal conductivity and swift nucleation kinetics when compared to the pure PCM. Besides, the SeDA PCM exhibited a high heat storage capacity of 194.5 J/g, which is relatively good in terms of regulating the temperature and heat retrieval rate of the electronic systems. Furthermore, the FTIR and the TGA results have confirmed the chemical stability and thermal stability of the Ag-enriched PCM on a long-term basis. These attributes of SeDA PCM are considered to be favorable for the thermal management of electronic systems.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1147)

Pages:

23-32

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Murshed, SM Sohel, and CA Nieto De Castro. "A critical review of traditional and emerging techniques and fluids for electronics cooling." Renewable and Sustainable Energy Reviews 78 (2017): 821-833.

DOI: 10.1016/j.rser.2017.04.112

Google Scholar

[2] Farzanehnia, Amin, Meysam Khatibi, Mohammad Sardarabadi, and Mohammad Passandideh-Fard. "Experimental investigation of multiwall carbon nanotube/paraffin based heat sink for electronic device thermal management." Energy conversion and management 179 (2019): 314-325.

DOI: 10.1016/j.enconman.2018.10.037

Google Scholar

[3] Kandasamy, Ravi, Xiang-Qi Wang, and Arun S. Mujumdar. "Transient cooling of electronics using phase change material (PCM)-based heat sinks." Applied thermal engineering 28, no. 8-9 (2008): 1047-1057.

DOI: 10.1016/j.applthermaleng.2007.06.010

Google Scholar

[4] Xie, Jinlong, Kok Fah Choo, Jianhua Xiang, and Hsiao Mun Lee. "Characterization of natural convection in a PCM-based heat sink with novel conductive structures." International Communications in Heat and Mass Transfer 108 (2019): 104306.

DOI: 10.1016/j.icheatmasstransfer.2019.104306

Google Scholar

[5] Yang, Xiao-Hu, Si-Cong Tan, Yu-Jie Ding, Lei Wang, Jing Liu, and Yi-Xin Zhou. "Experimental and numerical investigation of low melting point metal based PCM heat sink with internal fins." International Communications in Heat and Mass Transfer 87 (2017): 118-124.

DOI: 10.1016/j.icheatmasstransfer.2017.07.001

Google Scholar

[6] Nazir, Hassan, Mariah Batool, Francisco J. Bolivar Osorio, Marllory Isaza-Ruiz, Xinhai Xu, K. Vignarooban, Patrick Phelan, and Arunachala M. Kannan. "Recent developments in phase change materials for energy storage applications: A review." International Journal of Heat and Mass Transfer 129 (2019): 491-523.

DOI: 10.1016/j.ijheatmasstransfer.2018.09.126

Google Scholar

[7] Ali, Hafiz Muhammad, Muhammad Mansoor Janjua, Uzair Sajjad, and Wei-Mon Yan. "A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams." International Journal of Heat and Mass Transfer 135 (2019): 649-673.

DOI: 10.1016/j.ijheatmasstransfer.2019.02.001

Google Scholar

[8] Afaynou, Ibtissam, Hamza Faraji, Khadija Choukairy, Adeel Arshad, and Müslüm Arıcı. "Heat transfer enhancement of phase-change materials (PCMs) based thermal management systems for electronic components: A review of recent advances." International Communications in Heat and Mass Transfer 143 (2023): 106690.

DOI: 10.1016/j.icheatmasstransfer.2023.106690

Google Scholar

[9] Prabhu, B., and A. ValanArasu. "Stability analysis of TiO2-Ag nanocomposite particles dispersed paraffin wax as energy storage material for solar thermal systems." Renewable energy 152 (2020): 358-367.

DOI: 10.1016/j.renene.2020.01.043

Google Scholar

[10] Pise, A. T., A. V. Waghmare, and V. G. Talandage. "Heat transfer enhancement by using nanomaterial in phase change material for latent heat thermal energy storage system." Asian Journal of Engineering and Applied Technology 2, no. 2 (2013): 52-57.

DOI: 10.51983/ajeat-2013.2.2.667

Google Scholar

[11] Ma, Zhenjun, Wenye Lin, and M. Imroz Sohel. "Nano-enhanced phase change materials for improved building performance." Renewable and Sustainable Energy Reviews 58 (2016): 1256-1268.

DOI: 10.1016/j.rser.2015.12.234

Google Scholar

[12] Bondareva, Nadezhda S., Bernardo Buonomo, Oronzio Manca, and Mikhail A. Sheremet. "Heat transfer inside cooling system based on phase change material with alumina nanoparticles." Applied Thermal Engineering 144 (2018): 972-981.

DOI: 10.1016/j.applthermaleng.2018.09.002

Google Scholar

[13] Yu, Seulgi, Su-Gwang Jeong, Okyoung Chung, and Sumin Kim. "Bio-based PCM/carbon nanomaterials composites with enhanced thermal conductivity." Solar Energy Materials and Solar Cells 120 (2014): 549-554.

DOI: 10.1016/j.solmat.2013.09.037

Google Scholar

[14] Xiang, Jinglei, and Lawrence T. Drzal. "Investigation of exfoliated graphite nanoplatelets (xGnP) in improving thermal conductivity of paraffin wax-based phase change material." Solar Energy Materials and Solar Cells 95, no. 7 (2011): 1811-1818.

DOI: 10.1016/j.solmat.2011.01.048

Google Scholar

[15] Laghari, Imtiaz Ali, M. Samykano, A. K. Pandey, K. Kadirgama, and Yogeshwar Nath Mishra. "Binary composite (TiO2-Gr) based nano-enhanced organic phase change material: effect on thermophysical properties." Journal of Energy Storage 51 (2022): 104526.

DOI: 10.1016/j.est.2022.104526

Google Scholar

[16] Suresh Kumar, K. R., and S. Kalaiselvam. "Experimental investigations on the thermophysical properties of CuO-palmitic acid phase change material for heating applications." Journal of Thermal Analysis and Calorimetry 129 (2017): 1647-1657.

DOI: 10.1007/s10973-017-6301-9

Google Scholar

[17] Chaichan, Miqdam Tariq, and Hussein A. Kazem. "Single slope solar distillator productivity improvement using phase change material and Al2O3 nanoparticle." Solar Energy 164 (2018): 370-381.

DOI: 10.1016/j.solener.2018.02.049

Google Scholar

[18] Singh, Rupinder Pal, S. C. Kaushik, and Dibakar Rakshit. "Melting phenomenon in a finned thermal storage system with graphene nano-plates for medium temperature applications." Energy Conversion and Management 163 (2018): 86-99.

DOI: 10.1016/j.enconman.2018.02.053

Google Scholar

[19] Nada, S. A., D. H. El-Nagar, and H. M. S. Hussein. "Improving the thermal regulation and efficiency enhancement of PCM-Integrated PV modules using nano particles." Energy conversion and management 166 (2018): 735-743.

DOI: 10.1016/j.enconman.2018.04.035

Google Scholar

[20] Ma, Zhenjun, Wenye Lin, and M. Imroz Sohel. "Nano-enhanced phase change materials for improved building performance." Renewable and Sustainable Energy Reviews 58 (2016): 1256-1268.

DOI: 10.1016/j.rser.2015.12.234

Google Scholar

[21] Sheikholeslami, M., Elham Abohamzeh, M. Jafaryar, and Ahmad Shafee. "Heat storage unit involving nanoparticle-enhanced phase change materials." In Nanobatteries and Nanogenerators, pp.515-541. Elsevier, 2021.

DOI: 10.1016/b978-0-12-821548-7.00020-8

Google Scholar

[22] Krishna, Jogi, P. S. Kishore, and A. Brusly Solomon. "Heat pipe with nano enhanced-PCM for electronic cooling application." Experimental Thermal and Fluid Science 81 (2017): 84-92.

DOI: 10.1016/j.expthermflusci.2016.10.014

Google Scholar

[23] Gharbi, S., Harmand, S. and Jabrallah, S.B., 2015. Experimental comparison between different configurations of PCM based heat sinks for cooling electronic components. Applied Thermal Engineering, 87, pp.454-462.

DOI: 10.1016/j.applthermaleng.2015.05.024

Google Scholar

[24] Chintakrinda, Kireeti, Randy D. Weinstein, and Amy S. Fleischer. "A direct comparison of three different material enhancement methods on the transient thermal response of paraffin phase change material exposed to high heat fluxes." International Journal of Thermal Sciences 50, no. 9 (2011): 1639-1647.

DOI: 10.1016/j.ijthermalsci.2011.04.005

Google Scholar

[25] Aydın, Ahmet Alper, and Hasancan Okutan. "High-chain fatty acid esters of myristyl alcohol with odd carbon number: Novel organic phase change materials for thermal energy storage—2." Solar Energy Materials and Solar Cells 95, no. 8 (2011): 2417-2423.

DOI: 10.1016/j.solmat.2011.04.018

Google Scholar

[26] Wang, Jifen, Huaqing Xie, Zhong Xin, Yang Li, and Lifei Chen. "Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers." Solar Energy 84, no. 2 (2010): 339-344.

DOI: 10.1016/j.solener.2009.12.004

Google Scholar

[27] Wu, Shuying, Dongsheng Zhu, Xiurong Zhang, and Jin Huang. "Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM)." Energy & fuels 24, no. 3 (2010): 1894-1898.

DOI: 10.1021/ef9013967

Google Scholar

[28] Qureshi, Zubair Ahmad, Hafiz Muhammad Ali, and Shahab Khushnood. "Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review." International Journal of Heat and Mass Transfer 127 (2018): 838-856.

DOI: 10.1016/j.ijheatmasstransfer.2018.08.049

Google Scholar

[29] Karaipekli, Ali, Alper Biçer, Ahmet Sarı, and Vineet Veer Tyagi. "Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes." Energy conversion and management 134 (2017): 373-381.

DOI: 10.1016/j.enconman.2016.12.053

Google Scholar

[30] Parameshwaran, R., R. Jayavel, and S. Kalaiselvam. "Study on thermal properties of organic ester phase-change material embedded with silver nanoparticles." Journal of thermal analysis and calorimetry 114 (2013): 845-858.

DOI: 10.1007/s10973-013-3064-9

Google Scholar

[31] Naresh, R., R. Parameshwaran, and V. Vinayaka Ram. "Microcapsules of n-dodecanoic acid/melamine-formaldehyde with enhanced thermal energy storage capability for solar applications." Journal of Science: Advanced Materials and Devices 7, no. 3 (2022): 100462.

DOI: 10.1016/j.jsamd.2022.100462

Google Scholar

[32] Altan, Cem L., and Seyda Bucak. "The effect of Fe3O4 nanoparticles on the thermal conductivities of various base fluids." Nanotechnology 22, no. 28 (2011): 285713.

DOI: 10.1088/0957-4484/22/28/285713

Google Scholar