[1]
H. Liu, Z. Sun, J. Zhang, H. Luo, Q. Zhang, Y. Yao, S. Deng, H. Qi, J. Liu, L.C. Gallington, J.C. Neuefeind, J. Chen, Chemical design of Pb-free relaxors for giant capacitive energy storage, J. Am. Chem. Soc. 145 (2023) 11764−11772.
DOI: 10.1021/jacs.3c02811
Google Scholar
[2]
S. Supriya, A Review on Lead-Free-Bi0.5Na0.5TiO3 Based ceramics and films: dielectric, piezoelectric, ferroelectric and energy storage performance, J Inorg Organomet P 32 (2022) 3659-3676.
DOI: 10.1007/s10904-022-02418-6
Google Scholar
[3]
W. Jia, Y. Hou, M. Zheng, Y. Xu, M. Zhu, K. Yang, H. Cheng, S. Sun, J. Xing, Advances in lead‐free high‐temperature dielectric materials for ceramic capacitor application, IET Nanodielectrics 1 (2018) 3-16.
DOI: 10.1049/iet-nde.2017.0003
Google Scholar
[4]
Z. Lv, T. Lu, Z. Liu, T. Hu, Z. Hong, S. Guo, Z. Xu, Y. Song, Y. Chen, X. Zhao, Z. Lin, D. Yu, Y. Liu, G. Wang, NaNbO3‐based multilayer ceramic capacitors with ultrahigh energy storage performance, Adv. Energy Mater. 14 (2024) 2304291.
DOI: 10.1002/aenm.202304291
Google Scholar
[5]
X.J. Meng, Z.Y. Yang, Y. Yuan, B. Tang, S.R. Zhang, Superior energy-storage performances achieved in NaNbO3-based antiferroelectric ceramics by phase-structure and relaxation regulation, Chem. Eng. J. 477 (2023) 147097.
DOI: 10.1016/j.cej.2023.147097
Google Scholar
[6]
L.T. Yang, X. Kong, F. Li, H. Hao, Z.X. Cheng, H.X. Liu, J.F. Li, S.J. Zhang, Perovskite lead-free dielectrics for energy storage applications, Prog. Mater Sci. 102 (2019) 72-108.
DOI: 10.1016/j.pmatsci.2018.12.005
Google Scholar
[7]
F. Yan, J. Qian, S. Wang, J. Zhai, Progress and outlook on lead-free ceramics for energy storage applications, Nano Energy 123 (2024) 109394.
DOI: 10.1016/j.nanoen.2024.109394
Google Scholar
[8]
H. Zhang, T. Wei, Q. Zhang, W. Ma, P. Fan, D. Salamon, S.-T. Zhang, B. Nan, H. Tan, Z.-G. Ye, A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors, J. Mater. Chem. C 8 (2020) 16648-16667.
DOI: 10.1039/d0tc04381h
Google Scholar
[9]
W. Zhu, Z.-Y. Shen, W. Deng, K. Li, W. Luo, F. Song, X. Zeng, Z. Wang, Y. Li, A review: (Bi, Na)TiO3 (BNT)-based energy storage ceramics, J. Materiomics 10 (2023) 86-123.
DOI: 10.1016/j.jmat.2023.05.002
Google Scholar
[10]
G. Wang, Z. Lu, Y. Li, L. Li, H. Ji, A. Feteira, D. Zhou, D. Wang, S. Zhang, I.M. Reaney, Electroceramics for high-energy density capacitors: current status and future perspectives, Chem. Rev. 121 (2021) 6124-6172.
DOI: 10.1021/acs.chemrev.0c01264
Google Scholar
[11]
Y. Lin, D. Li, M. Zhang, H. Yang, (Na0.5Bi0.5)0.7Sr0.3TiO3 modified by Bi(Mg2/3Nb1/3)O3 ceramics with high energy-storage properties and an ultrafast discharge rate, J. Mater. Chem. C 8 (2020) 2258-2264.
Google Scholar
[12]
G. Viola, Y. Tian, C. Yu, Y. Tan, V. Koval, X. Wei, K.-L. Choy, H. Yan, Electric field-induced transformations in bismuth sodium titanate-based materials, Prog. Mater Sci. 122 (2021).
DOI: 10.1016/j.pmatsci.2021.100837
Google Scholar
[13]
D. Schütz, M. Deluca, W. Krauss, A. Feteira, T. Jackson, K. Reichmann, Lone-pair-induced covalency as the cause of temperature- and field-induced instabilities in bismuth sodium titanate, Adv. Funct. Mater. 22 (2012) 2285-2294.
DOI: 10.1002/adfm.201102758
Google Scholar
[14]
W.P. Cao, W.L. Li, X.F. Dai, T.D. Zhang, J. Sheng, Y.F. Hou, W.D. Fei, Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics, J. Eur. Ceram. Soc. 36 (2016) 593-600.
DOI: 10.1016/j.jeurceramsoc.2015.10.019
Google Scholar
[15]
Z. Liu, A. Zhang, S. Xu, J. Lu, B. Xie, K. Guo, Y. Mao, Mediating the confliction of polarizability and breakdown electric-field strength in BNST relaxor ferroelectric for energy storage applications, J. Alloys Compd. 823 (2020) 153772.
DOI: 10.1016/j.jallcom.2020.153772
Google Scholar
[16]
Q.-N. Li, C.-R. Zhou, J.-W. Xu, L. Yang, X. Zhang, W.-D. Zeng, C.-L. Yuan, G.-H. Chen, G.-H. Rao, Ergodic relaxor state with high energy storage performance induced by doping Sr0.85Bi0.1TiO3 in Bi0.5Na0.5TiO3 ceramics, J. Electron. Mater. 45 (2016) 5146-5151.
DOI: 10.1007/s11664-016-4731-y
Google Scholar
[17]
X. Qiao, D. Wu, F. Zhang, M. Niu, B. Chen, X. Zhao, P. Liang, L. Wei, X. Chao, Z. Yang, Enhanced energy density and thermal stability in relaxor ferroelectric Bi0.5Na0.5TiO3-Sr0.7Bi0.2TiO3 ceramics, J. Eur. Ceram. Soc. 39 (2019) 4778-4784.
DOI: 10.1016/j.jeurceramsoc.2019.07.003
Google Scholar
[18]
Y. Zhao, L. Zhu, X. Meng, Y. Li, X. Hao, Enhanced energy-storage properties in Bi0.5Na0.5TiO3-xSr0.85Bi0.1TiO3 by regulating relaxation temperature and constructing multilayer structure, Mater. Sci. Eng. B 282 (2022) 115773.
DOI: 10.1016/j.mseb.2022.115773
Google Scholar
[19]
J. Li, F. Li, Z. Xu, S. Zhang, Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency, Adv. Mater. 30 (2018) 1802155.
DOI: 10.1002/adma.201870240
Google Scholar
[20]
L. Zhang, R. Jing, Y. Huang, Q. Hu, D.O. Alikin, V.Y. Shur, J. Gao, X. Wei, L. Zhang, G. Liu, Y. Yan, L. Jin, Enhanced antiferroelectric-like relaxor ferroelectric characteristic boosting energy storage performance of (Bi0.5Na0.5)TiO3-based ceramics via defect engineering, J. Materiomics 8 (2022) 527-536.
DOI: 10.1016/j.jmat.2022.01.007
Google Scholar
[21]
P. Li, Q. Jia, P. Han, C. Lu, P. Li, Y. Li, Q. Zhang, X. Hao, Synergistic engineering of doping and vacancy in K0.5Na0.5NbO3-based photochromic ceramics to boost luminescent readout ability, Ceram. Int. 49 (2023) 19966-19973.
DOI: 10.1016/j.ceramint.2023.03.118
Google Scholar
[22]
A. Deng, J. Wu, Effects of rare-earth dopants on phase structure and electrical properties of lead-free bismuth sodium titanate-based ceramics, J. Materiomics 6 (2020) 286-292.
DOI: 10.1016/j.jmat.2020.03.005
Google Scholar
[23]
J. Hao, Z. Xu, R. Chu, W. Li, P. Fu, J. Du, G. Li, Large electrostrictive effect and strong photoluminescence in rare-earth modified lead-free (Bi0.5Na0.5)TiO3-based piezoelectric ceramics, Scripta Mater. 122 (2016) 10-13.
DOI: 10.1016/j.scriptamat.2016.05.004
Google Scholar
[24]
C. Bin, X. Hou, L. Liao, Y. Liu, H. Yang, Y. Liu, J. Wang, Improved energy storage performance in rare-earth modified lead-free BNT-based relaxor ferroelectric ceramics, Appl. Phys. Lett. 123 (2023) 012901.
DOI: 10.1063/5.0158219
Google Scholar
[25]
X. Qiao, F. Zhang, D. Wu, B. Chen, X. Zhao, Z. Peng, X. Ren, P. Liang, X. Chao, Z. Yang, Superior comprehensive energy storage properties in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics, Chem. Eng. J. 388 (2020) 124158.
DOI: 10.1016/j.cej.2020.124158
Google Scholar
[26]
Y. Jiao, S. Song, F. Chen, X. Zeng, X. Wang, C. Song, G. Liu, Y. Yan, Energy storage performance of 0.55Bi0.5Na0.5TiO3-0.45SrTiO3 ceramics doped with lanthanide elements (Ln = La, Nd, Dy, Sm) using a viscous polymer processing route, Ceram. Int. 48 (2022) 10885-10894.
DOI: 10.1016/j.ceramint.2021.12.305
Google Scholar
[27]
Z. Yang, Y. Yuan, L. Cao, E. Li, S. Zhang, Relaxor ferroelectric (Na0.5Bi0.5)0.4Sr0.6TiO3-based ceramics for energy storage application, Ceram. Int. 46 (2020) 11282-11289.
DOI: 10.1016/j.ceramint.2020.01.154
Google Scholar
[28]
Z. Jiang, Y. Yuan, H. Yang, E. Li, S. Zhang, Excellent thermal stability and energy storage properties of lead‐free Bi0.5Na0.5TiO3‐based ceramic, J. Am. Ceram. Soc. 105 (2022) 4027-4038.
DOI: 10.1111/jace.18332
Google Scholar
[29]
L. Cao, Y. Yuan, X. Meng, E. Li, B. Tang, Ferroelectric-relaxor crossover and energy storage properties in Sr2NaNb5O15-based tungsten bronze ceramics, ACS Appl. Mater. Interfaces 14 (2022) 9318-9329.
DOI: 10.1021/acsami.1c23673
Google Scholar
[30]
F. Yan, K. Huang, T. Jiang, X. Zhou, Y. Shi, G. Ge, B. Shen, J. Zhai, Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering, Energy Storage Mater. 30 (2020) 392-400.
DOI: 10.1016/j.ensm.2020.05.026
Google Scholar
[31]
Z. Che, L. Ma, G. Luo, C. Xu, Z. Cen, Q. Feng, X. Chen, K. Ren, N. Luo, Phase structure and defect engineering in (Bi0.5Na0.5)TiO3-based relaxor antiferroelectrics toward excellent energy storage performance, Nano Energy 100 (2022) 107484.
DOI: 10.1016/j.nanoen.2022.107484
Google Scholar
[32]
R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A 32 (1976) 751-767.
DOI: 10.1107/s0567739476001551
Google Scholar
[33]
Y.Q. Jia, Crystal radii and effective ionic-radii of the rare-earth ions, J. Solid State Chem. 95 (1991) 184-187.
DOI: 10.1016/0022-4596(91)90388-x
Google Scholar
[34]
W. Wang, L. Zhang, W. Shi, Y. Yang, D. Alikin, V. Shur, Z. Lou, D. Wang, A. Zhang, J. Gao, X. Wei, H. Du, F. Gao, L. Jin, Enhanced energy storage properties in lead-free (Na0.5Bi0.5)0.7Sr0.3TiO3 -based relaxor ferroelectric ceramics through a cooperative optimization strategy, ACS Appl. Mater. Interfaces 15 (2023) 6990−7001.
DOI: 10.1021/acsami.2c21969
Google Scholar
[35]
F. Li, X. Hou, T. Li, R. Si, C. Wang, J. Zhai, Fine-grain induced outstanding energy storage performance in novel Bi0.5K0.5TiO3–Ba(Mg1/3Nb2/3)O3 ceramics via a hot-pressing strategy, J. Mater. Chem. C 7 (2019) 12127-12138.
DOI: 10.1039/c9tc04320a
Google Scholar
[36]
Z. Yang, F. Gao, H. Du, L. Jin, L. Yan, Q. Hu, Y. Yu, S. Qu, X. Wei, Z. Xu, Y.-J. Wang, Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties, Nano Energy 58 (2019) 768-777.
DOI: 10.1016/j.nanoen.2019.02.003
Google Scholar
[37]
Z. Pan, D. Hu, Y. Zhang, J. Liu, B. Shen, J. Zhai, Achieving high discharge energy density and efficiency with NBT-based ceramics for application in capacitors, J. Mater. Chem. C 7 (2019) 4072-4078.
DOI: 10.1039/c9tc00087a
Google Scholar
[38]
Q. Zheng, B. Xie, Y. Tian, Q. Wang, H. Luo, Z. Liu, H. Zhang, High recoverable energy density of Na0.5Bi0.5TiO3-based ceramics by multi-scale insulation regulation and relaxor optimization strategy, J. Materiomics 10 (2024) 845-856.
DOI: 10.1016/j.jmat.2023.10.005
Google Scholar
[39]
W. Zeng, X. Niu, Y. Jiang, H. Liu, Z. Xu, X. Lu, M. Xu, H. Lin, H. He, X. Zhao, Y. Yao, T. Tao, B. Liang, S.-G. Lu, An ultrahigh energy storage density in lead-free Na0.5Bi0.5TiO3-NaNbO3 based ceramics via multiple optimization strategies, Scripta Mater. 245 (2024) 116052.
DOI: 10.1016/j.scriptamat.2024.116052
Google Scholar
[40]
Y. Zhao, J. Du, J. Yang, L. Zhu, Y. Wang, Y. Li, X. Hao, Large room-temperature electrocaloric response realized in potassium-sodium niobate by a relaxor enhancement effect and multilayer ceramic construct, ACS Appl. Mater. Interfaces 14 (2022) 11626−11635.
DOI: 10.1021/acsami.1c23622
Google Scholar
[41]
F. Li, S. Zhang, D. Damjanovic, L.Q. Chen, T.R. Shrout, Local structural heterogeneity and electromechanical responses of ferroelectrics: learning from relaxor ferroelectrics, Adv. Funct. Mater. 28(37) (2018) 1801504.
DOI: 10.1002/adfm.201870262
Google Scholar
[42]
C. Li, J. Liu, L. Lin, W. Bai, S. Wu, P. Zheng, J. Zhang, J. Zhai, Superior energy storage capability and stability in lead-free relaxors for dielectric capacitors utilizing nanoscale polarization heterogeneous regions, Small (2023) 2206662.
DOI: 10.1002/smll.202206662
Google Scholar
[43]
L. Chen, F.X. Long, H. Qi, H. Liu, S.Q. Deng, J. Chen, Outstanding energy storage performance in high-hardness (Bi0.5K0.5)TiO3-based lead-free relaxors via multi-scale synergistic design, Adv. Funct. Mater. 32 (2021) 2110478.
DOI: 10.1002/adfm.202110478
Google Scholar