[1]
Kanyane, L., et al., Synthesis of equi-atomic Ti-Al-Mo-Si-Ni high entropy alloy via spark plasma sintering technique: Evolution of microstructure, wear, corrosion and oxidation behaviour. Results in Physics, 2019. 14: p.102465.
DOI: 10.1016/j.rinp.2019.102465
Google Scholar
[2]
Kanyane, L.R., A.P. Popoola, and N. Malatji. Influence of Sintering Temperature on Microhardness and Tribological Properties of Equi-Atomic Ti-Al-Mo-Si-W Multicomponent Alloy. in IOP Conference Series: Materials Science and Engineering. 2019. IOP Publishing.
DOI: 10.1088/1757-899x/538/1/012009
Google Scholar
[3]
Malatji, N., et al., Tribological and corrosion properties of laser additive manufactured AlCrFeNiCu high entropy alloy. Materials Today: Proceedings, 2020. 28: pp.944-948.
DOI: 10.1016/j.matpr.2019.12.330
Google Scholar
[4]
Malatji, N., et al., Effect of Nb addition on the microstructural, mechanical and electrochemical characteristics of AlCrFeNiCu high-entropy alloy. International Journal of Minerals, Metallurgy and Materials, 2020. 27: pp.1332-1340.
DOI: 10.1007/s12613-020-2178-x
Google Scholar
[5]
George, E.P., W. Curtin, and C.C. Tasan, High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Materialia, 2020. 188: pp.435-474.
DOI: 10.1016/j.actamat.2019.12.015
Google Scholar
[6]
Kalantari, H., et al., Nanocrystalline AlCoFeNiTiZn high entropy Alloy: Microstructural, Magnetic, and thermodynamic properties. Advanced Powder Technology, 2023. 34(5): p.104009.
DOI: 10.1016/j.apt.2023.104009
Google Scholar
[7]
Prabu, G., et al., Microstructural evolution and wear behavior of AlCoCrCuFeNi high entropy alloy on Ti–6Al–4V through laser surface alloying. Metals and Materials International, 2021. 27: pp.2328-2340.
DOI: 10.1007/s12540-020-00873-9
Google Scholar
[8]
Kanyane, L., et al., Synthesis and characterization of Al–SiC composite coatings on 316L stainless steel fabricated via laser cladding technique. Metallography, Microstructure, and Analysis, 2021. 10: pp.601-609.
DOI: 10.1007/s13632-021-00778-y
Google Scholar
[9]
Kanyane, L.R., et al., Microstructural evolution and corrosion properties of laser clad Ti-Ni on titanium alloy (Ti6Al4V). Procedia Manufacturing, 2019. 35: pp.1267-1272.
DOI: 10.1016/j.promfg.2019.06.086
Google Scholar
[10]
Gao, Q., et al., Multi-objective optimization for laser cladding refractory MoNbTiZr high-entropy alloy coating on Ti6Al4V. Optics & Laser Technology, 2023. 161: p.109220.
DOI: 10.1016/j.optlastec.2023.109220
Google Scholar
[11]
Chen, L., et al., Microstructure and elastic constants of AlTiVMoNb refractory high-entropy alloy coating on Ti6Al4V by laser cladding. Materials Research Express, 2019. 6(11): p.116571.
DOI: 10.1088/2053-1591/ab49e7
Google Scholar
[12]
Bai, L., et al., Titanium alloying enhancement of mechanical properties of NbTaMoW refractory high-Entropy alloy: First-principles and experiments perspective. Journal of Alloys and Compounds, 2021. 857: p.157542.
DOI: 10.1016/j.jallcom.2020.157542
Google Scholar