Evaluation of Analgesic Property of Silver Nanoparticles Synthesized Using Mitracarpus scaber Aqueous Extract

Article Preview

Abstract:

Pain is one of the main causes for which people seek medical attention. Strong, long-lasting, safe analgesics are therefore still needed in the medical industry to treat a wide range of painful disorders, despite recent advancements in pain treatment. The current work is intended to assess the analgesic properties of silver nanoparticles (AgNPs) synthesized using Mitracarpus scaber aqueous extract. Aqueous extraction of Mitracarpus scaber whole plant was done and employed to make and cap AgNPs using 0.1M AgNO3 solution. The produced AgNPs were examined using a variety of methods, such as Fourier Transform Infrared Spectroscopy (FTIR), UV-VIS, and Transmission Electron Microscopy (TEM). Acetic acid writhing and hot plate tests were then used to investigate the analgesic activity of various doses of the biosynthesized AgNPs. AgNPs production was detected by UV-vis spectroscopy at λ max = 425 nm. The biosynthesized AgNPs had a size range of 4-5 nm, were crystalline and spherical in shape, according to TEM investigations. FTIR analysis on the other hand revealed the involvement of phenyl, hydroxyl, carbonyl, and aliphatic carbon-hydrogen bonds in the AgNPs' production. The biogenic silver nanoparticles showed the highest reduction of writhes and pain at the doses of 100 and 50 mg/kg b.w. respectively, which were significantly higher than the analgesic activity elicited by Diclofenac (50 mg/kg b.w.) for both assays. The present work therefore concludes that biogenic silver nanoparticles using aqueous extract of Mitracarpus scaber have strong analgesic properties and could be utilized for the management of pain after proper pharmacological evaluations.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1148)

Pages:

15-26

Citation:

Online since:

May 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.E. Casiano, G. Sarwan, A.M. Dydyk, Back Pain, In: StatPearls [Internet],Treasure Island (FL): StatPearls Publishing, 2023. Available from: https://www.ncbi.nlm.nih.gov/ books/NBK538173/.

Google Scholar

[2] J. Prego-Domínguez, E. Skillgate, N. Orsini, B.Takkouche, Social factors and pain worsening: a retrospective cohort study, Br. J. Anaesth. 127 (2021). 289-295.

DOI: 10.1016/j.bja.2021.04.021

Google Scholar

[3] A. Rauf, N. Jehan, Z.Ahmad, M.S. Mubarak, Analgesic potential of extracts and derived natural products from medicinal plants, InTech (2017).

DOI: 10.5772/intechopen.68631

Google Scholar

[4] A.N. Ukwuani-Kwaja, R. Dalhatu, T.J. Senchi, U.D. Nuhu, Analgesic and wound healing effect of methanolic leaves extract of Pennisetum pedicellatum in wistar albino rat, Int. J. Med. Plants Nat. Prod. 4 (2018). 13-18.

DOI: 10.20431/2454-7999.0401003

Google Scholar

[5] B. Jahromi, I. Pirvulescu, K.D. Candido, N.N. Knezevic, Herbal medicine for pain management: efficacy and drug interactions, Pharmaceutics. 13 (2021). 251.

DOI: 10.3390/pharmaceutics13020251

Google Scholar

[6] A.Najmi, S.A. Javed, M. Al Bratty, H.A. Alhazmi, Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents, Molecules. 27 (2022). 349.

DOI: 10.3390/molecules27020349

Google Scholar

[7] C.M. Uritu, C.T. Mihai, G.D. Stanciu, G. Dodi, T. Alexa-Stratulat, A. Luca, B.I. Tamba, Medicinal plants of the family Lamiaceae in pain therapy: A review, Pain Res Manag. 7801543(2018).

DOI: 10.1155/2018/7801543

Google Scholar

[8] A. Ekalu, Medicinal uses, phytochemistry, and pharmacolog-ical activities of Mitracarpus species (Rubiaceae): A review, Sci. Afr. (2020). 1-28.

DOI: 10.1016/j.sciaf.2020.e00692

Google Scholar

[9] B. Ouadja, K. Anani, B. Djeri, Y.O. Ameyapoh, D.S. Karou, Evaluation of the phytochemical composition, antimicrobial and anti-radical activities of Mitracarpus scaber (Rubiaceae), J. Med. Plant Res.12 (2018). 493-499.

DOI: 10.5897/jmpr2018.6631

Google Scholar

[10] F.O. Okonkwo, , Jonathan, J.A. Ibibra, J.B. Nvau, Crude extracts of Mitracarpus scaber roots significantly ameliorate paracetamol (PCM)-induced liver damage in rats, Am. J. Biomed. Res. 7(2019). 148-154.

DOI: 10.11648/j.ajbls.20190706.14

Google Scholar

[11] A. Georges, S. Ouattara-Soro Fatou, N.G. Ernest Zougrou, K. John Kouadio, K. Emile Begbin, K. Sévérin, K. Jean-Jacques Kablan, K. Alassane, Anti-arthritic activity of the aqueous extract of the aerial parts of Mitracarpus scaber (Rubiaceae) Zucc in Rats Wistar, Journal of Diseases and Medicinal Plants. 7(2021). 22-29.

DOI: 10.11648/j.jdmp.20210701.14

Google Scholar

[12] M. Marie-Claire, M. Bernard,M. Denis, G. Agathe, H. Cindy, J. Robin, A.A. Ange, B. Jean-Theophile, Pharmacological studies of ten medicinal plants used for analgesic purposes in Congo Brazzaville, Int. J. Pharmacol. 7(2011). 608-615.

DOI: 10.3923/ijp.2011.608.615

Google Scholar

[13] M.M. Namadina, A.U. Mukhtar, F.M. Musa, M.H. Sani, S. Haruna, Y. Nuhu, A.M. Umar, Phytochemical, antifungal and acute toxicity studies of Mitracarpus scaber Zucc. whole plant extracts, ChemSearch Journal.11(2020). 73 – 81.

Google Scholar

[14] A.O. Gloria, J.A. Anthony, O.A. Emmanuel, W.O. Samuel, Characterization, antibacterial and antioxidant properties of silver nanoparticles synthesized from aqueous extracts of Allium sativum, Zingiber officinale, and Capsicum frutescens, Pharmacogn. Mag. 13(2017). 201-208.

DOI: 10.4103/pm.pm_430_16

Google Scholar

[15] I. Khan, K. Saeed, I. Khan, Nanoparticles: Properties, applications and toxicities, Arab. J. Chem. 12(2019). 908-931.

Google Scholar

[16] T. Joseph, D. Kar Mahapatra, A. Esmaeili, Ł. Piszczyk, M. Hasanin, M. Kattali, J. Haponiuk, Nanoparticles: Taking a unique position in medicine, Nanomaterials. 13(2023). 574.

DOI: 10.3390/nano13030574

Google Scholar

[17] A. Dhaka, S. Chand Mali, S. Sharma, R. Trivedi, A review on biological synthesis of silver nanoparticles and their potential applications, Results Chem.6(2023). 101108.

DOI: 10.1016/j.rechem.2023.101108

Google Scholar

[18] M. Dhayalan, P. Karikalan, M. Riyaz Savaas Umar, N. Srinivasan, Biomedical applications of silver nanoparticles, IntechOpen (2021).

DOI: 10.5772/intechopen.99367

Google Scholar

[19] T. I. Adesipe, E. J. Iweala, I. O. Ishola, O. A. Arotiba. A. H. Adebayo,Utilizing Mitracarpus scaber extracts for green synthesis of silver nanoparticles: Exploring physicochemical properties and potential chemopreventive activity against N-methyl-nitrosourea- induced prostate carcinoma in rats, Nano-Struct. Nano-Objects. 40(2024). 101363.

DOI: 10.1016/j.nanoso.2024.101363

Google Scholar

[20] S. Li, T. Cai, S. Cui, F. Liu, R. Hu, W. Li, Prostate Cancer, Oxidative Stress, and Antioxidant Phytochemicals: A Brief Review, Curr. Pharmacol. Rep. 9(2023). 391-396.

DOI: 10.1007/s40495-023-00344-w

Google Scholar

[21] N. Kustrimovic, R. Bombelli, D. Baci, L. Mortara, Microbiome and Prostate Cancer: A Novel Target for Prevention and Treatment, Int. J. Mol. Sci. 24(2023). 1511.

DOI: 10.3390/ijms24021511

Google Scholar

[22] L. Huang, M.J. LaBonte, S.G. Craig, S.P. Finn, E.H. Allott, Inflammation and prostate cancer: A multidisciplinary approach to identifying opportunities for treatment and prevention,Cancers (Basel). 14(2020). 1367.

DOI: 10.3390/cancers14061367

Google Scholar

[23] S. Assari, C. Wisseh, M. Saqib, M. Bazargan, Polypharmacy is associated with lower memory function in African American older adults. Brain Sci. 10(2020). 49.

DOI: 10.3390/brainsci10010049

Google Scholar

[24] T. Adesipe, A. Adebayo, E. Iweala, Biosynthesis of silver nanoparticles using Mitracarpus scaber extracts for the treatment of infectious disease: synthesis, characterization, antibacterial and anti-inflammatory efficacy, Babcock Univ. Med. J., 7(2024). 160–171.

DOI: 10.38029/babcockuniv.med.j..v7i1.428

Google Scholar

[25] National Institute of Health Office of Animal Care and Use, Animal research advisory committee guidelines, 2016. Available at https://oacu.oir.nih.gov/animal-research-advisory-committee-guidelines.

Google Scholar

[26] J.O. Ofeimun, H.A. Aghulor, Z.A.M. Nworgu, Phytochemical screening and analgesic effect, in mice, of the methanolic leaf extract of Manniophyton fulvum Mull.-Arg.(Euphorbiaceae), J Pharm Bioresour. 19(2022).24-32.

DOI: 10.4314/jpb.v19i1.4

Google Scholar

[27] A. Alemu, W. Tamiru, T. Nedi,W. Shibeshi, Analgesic and anti-inflammatory effects of 80% methanol extract of Leonotis ocymifolia (Burm.f.) Iwarsson leaves in rodent models, Evid. Based Complement Alternat Med . 1614793(2018).

DOI: 10.1155/2018/1614793

Google Scholar

[28] N.B. Eddy, D. Leimbach, Synthetic analgesics. II. Dithienylbutenyl- and dithienylbutymamines, J. Pharmacol. Exp. Ther. 107 (1953). 385–393.

DOI: 10.1016/s0022-3565(25)05180-8

Google Scholar

[29] J. P. Dzoyem, L.J. McGaw, V. Kuete, U. Bakowsky, Chapter 9 Antiinflammatory and anti-nociceptive activities of african medicinal spices and vegetables, In V. Kuete (Ed.), Medicinal spices and vegetables from Africa, 2017, pp.239-270.

DOI: 10.1016/b978-0-12-809286-6.00009-1

Google Scholar

[30] S.M. Zihad, N. Bhowmick, S.M. Uddin, N. Sifat, M.S. Rahman, R. Rouf, S.D. Sarker, Analgesic activity, chemical profiling and computational study on Chrysopogon aciculatus, Front. 9(2018). 1164.

DOI: 10.3389/fphar.2018.01164

Google Scholar

[31] E. Adeyeye, B. Jaa Ming New, F. Chen, S. Kulkarni, M. Fisk, J.J. Colema,Sustainable medicines use in clinical practice: A clinical pharmacological view on eco-pharmaco-stewardship, British J. Clin Pharmacol. 88 (2022). 3023–3029.

DOI: 10.1111/bcp.15140

Google Scholar

[32] A. Abdolrazaghnejad, M. Banaie, N. Tavakoli, M. Safdari, A. Rajabpour-Sanati, Pain management in the emergency department: A review article on options and methods, Adv J. Emerg Med. 2(2018). e45.

Google Scholar

[33] J.A. Da Silva, The challenge of pain, Psychology & Neuroscience, (2014).

Google Scholar

[34] M.I. Noordin, Advance delivery system dosage form for analgesic, their rationale,and specialty, InTech (2017).

DOI: 10.5772/68096

Google Scholar

[35] S. Babaie, A.Taghvimi, J.H. Hong, H. Hamishehkar, S. An, K.H. Kim, Recent advances in pain management based on nanoparticle technologies, J.Nanobiotechnology. 20(2022). 290.

DOI: 10.1186/s12951-022-01473-y

Google Scholar

[36] H.B.H. Rahuman, D. Ranjithkumar, S. Narayanan, P. Velmurugan, R. Paramasivam, R.Subbarayalu, S. Muthupandian, Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications, IET Nanobiotechnol. 16(2022). 1-30.

DOI: 10.1049/nbt2.12078

Google Scholar

[37] C. Tanase, L. Berta, N.A. Coman, I. Roșca, A. Man, F. Toma, A. Mocan, A.Mare, Antibacterial and antioxidant potential of silver nanoparticles biosynthesized using the spruce bark extract, Nanomaterials (Basel). 9(2019). 1541.

DOI: 10.3390/nano9111541

Google Scholar

[38] H. Chiguvare, O.O. Oyedeji, R. Matewu, O. Aremu, I.A. Oyemitan, A.O. Oyedeji, OS. Oluwafemi, Synthesis of silver nanoparticles using Buchu plant extracts and their analgesic properties, Molecules, 21(2016). 774.

DOI: 10.3390/molecules21060774

Google Scholar

[39] S. Faujdar, S. Sharma, B. Sati, A.K. Pathak, S.K. Paliwal,Comparative analysis of analgesic and anti-inflammatory activity of bark and leaves of Acacia ferruginea DC. Beni-Suef Univ J Basic Appl Sci.5(2016). 70-78.

DOI: 10.1016/j.bjbas.2016.02.002

Google Scholar

[40] C.S. Zamrutizahra, I. Widjiastuti, S. Kunarti, Effective dose of propolis extract against pain response in mice (Mus musculus) using writhing test method. Conservative Dentistry Journal.12(2022). 86-89.

DOI: 10.20473/cdj.v12i2.2022.86-89

Google Scholar