[1]
S. Ratna, S. Rastogi, R. Kumar, Current trends for distillery wastewater management and its emerging applications for sustainable environment. J. Env. Manag, 2021. 290 (2021) 112544.
DOI: 10.1016/j.jenvman.2021.112544
Google Scholar
[2]
R. Chandra, V. Kumar, S. Tripathi and P. Sharma, Heavy metal phytoextraction potential of native weeds and grasses from endocrine-disrupting chemicals rich complex distillery sludge and their histological observations during in-situ phytoremediation. Ecol. Eng. 111 (2018) 143-156.
DOI: 10.1016/j.ecoleng.2017.12.007
Google Scholar
[3]
RMOF Sousa, C. Amaral, JMC. Fernandes, I. Fraga, S. Semitela, F. Braga, AM. Coimbra, AA. Dias, RM. Bezerra, A. Sampaio A., Hazardous impact of vinasse from distilled winemaking by-products in terrestrial plants and aquatic organisms. Ecotoxicology and Env. Safety, 183 (2019) 109493.
DOI: 10.1016/j.ecoenv.2019.109493
Google Scholar
[4]
A.H. Sulaymon, B.A. Abid, and J.A. Al-Najar, Removal of lead copper chromium and cobalt ions onto granular activated carbon in batch and fixed-bed adsorbers. Chemical Engineering J. 155(2009) 647-653.
DOI: 10.1016/j.cej.2009.08.021
Google Scholar
[5]
K. Li, Z. Zheng, and Y. Li, Characterization and lead adsorption properties of activated carbons prepared from cotton stalk by one-step H3PO4 activation. J. of Hazardous Mat.181(2010) 440-447.
DOI: 10.1016/j.jhazmat.2010.05.030
Google Scholar
[6]
J. Li, G. Lin, F. Tan, L. Fu, B. Zeng, S. Wang, T. Hu, L. Zhang, Selective adsorption of mercury ion from water by a novel functionalized magnetic Ti based metal-organic framework composite. J. of Colloid and Interface Sci., 651(2023) 659-668.
DOI: 10.1016/j.jcis.2023.08.022
Google Scholar
[7]
Jonas M. Ambrosy, Christoph Pasel, Michael Luckas, Margot Bittig, and Dieter Bathen., A Detailed Investigation of Adsorption Isotherms, Enthalpies, and Kinetics of Mercury Adsorption on Nonimpregnated Activated Carbon. Industrial & Engineering Chemistry Research, 58(2019) 4208-4221.
DOI: 10.1021/acs.iecr.8b05932
Google Scholar
[8]
A. E. Burakov, E. V. Galunin, I. V. Burakova, A. E. Kucherova, S. Agarwal, A. G. Tkachev and V. K. Gupta, Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicology and Environmental Safety, 148 (2018) 702-712.
DOI: 10.1016/j.ecoenv.2017.11.034
Google Scholar
[9]
A. Abd El Hameed, A. H., W. E. Eweda, K. A. A. Abou-Taleb and H. I. Mira Biosorption of uranium and heavy metals using some local fungi isolated from phosphatic fertilizers. Annals of Agricultural Sciences, 60(2015): pp.345-351.
DOI: 10.1016/j.aoas.2015.10.003
Google Scholar
[10]
T.K. Das, T.K. and A. Poater, Review on the Use of Heavy Metal Deposits from Water Treatment Waste towards Catalytic Chemical Syntheses. Int J Mol Sci, 2021. 22(24).
DOI: 10.3390/ijms222413383
Google Scholar
[11]
A. Balaria, and S. Schiewer, Assessment of biosorption mechanism for Pb binding by citrus pectin. Separation and Purification Technology, 63(2008) 577-581.
DOI: 10.1016/j.seppur.2008.06.023
Google Scholar
[12]
M. Behjati, M. Baghdadi, and A. Karbassi, Removal of mercury from contaminated saline wasters using dithiocarbamate functionalized-magnetic nanocomposite. J. of Env. Managem 213 (2018) 66-78.
DOI: 10.1016/j.jenvman.2018.02.052
Google Scholar
[13]
H. Shirkhanloo, O. Mahmood, Osanloo, G. Mehri, H. Hamid, Validation of a new and cost-effective method for mercury vapor removal based on silver nanoparticles coating on micro glassy balls. Atm. Pollution Res. 8(2017) 359-365.
DOI: 10.1016/j.apr.2016.10.004
Google Scholar
[14]
P. Sathishkumar, M. Arulkumar, and T. Palvannan, Utilization of agro-industrial waste Jatropha curcas pods as an activated carbon for the adsorption of reactive dye Remazol Brilliant Blue R (RBBR). J. of Cleaner Production. 22(2012) 67-75.
DOI: 10.1016/j.jclepro.2011.09.017
Google Scholar
[15]
N. Masood, M. A. Irshad, R. Nawaz, T. Abbas, M. A. Abdel-Maksoud, W. H. AlQahtani, H. AbdElgawad, M. Rizwan and A. H. A. Abeed, Green synthesis, characterization and adsorption of chromium and cadmium from wastewater using cerium oxide nanoparticles; reaction kinetics study. J. of Molecular Structure, 1294 (2023)136563.
DOI: 10.1016/j.molstruc.2023.136563
Google Scholar
[16]
F.U. Haider, C. Liqun, J. A. Coulter, S. A. Cheema, J. Wu, R. Zhang, M. Wenjun and M. Farooq Cadmium toxicity in plants: Impacts and remediation strategies, Ecotoxicology and Env. Safety. 211(2021) 111887
DOI: 10.1016/j.ecoenv.2020.111887
Google Scholar
[17]
M.A. Irshad, S. Sattar, R. Nawaz, S. A. Al-Hussain, M. Rizwan, A. Bukhari, M. Waseem, A. Irfan, A. Inam and M. E. A. Zaki, Enhancing chromium removal and recovery from industrial wastewater using sustainable and efficient nanomaterial: A review. Ecotoxicology and Env. Safety. 263 (2023) 115231.
DOI: 10.1016/j.ecoenv.2023.115231
Google Scholar
[18]
Y. Tadayon, M.E. Bahrololoom, and S. Javadpour, An experimental study of sunflower seed husk and zeolite as adsorbents of Ni(II) ion from industrial wastewater, Water Resources and Industry, 2023. 30: p.100214.
DOI: 10.1016/j.wri.2023.100214
Google Scholar
[19]
M. A, H., J. H. S, and H. A. M, Removal of iron from water using hydrogen peroxide. Journal of Env. Sci., 41(2018) 1-17.
Google Scholar
[20]
M. Zeng, I. Echols, P. Wang, S. Lei, J. Luo, B. Peng, L. He, L. Zhang, D. Huang, C. Mejia, L. Wang, M. S. Mannan and Z. Cheng, Highly Biocompatible, Underwater Superhydrophilic and Multifunctional Biopolymer Membrane for Efficient Oil–Water Separation and Aqueous Pollutant Removal, ACS Sustainable Chemistry & Engineering, 6(2018) 3879-3887.
DOI: 10.1021/acssuschemeng.7b04219
Google Scholar
[21]
F.B. Elehinafe, O. Agboola, A. D. Vershima and G. O. Bamigboye, Insights on the advanced separation processes in water pollution analyses and wastewater treatment – A review. South African J. Chem. Eng. 42(2022)188-200.
DOI: 10.1016/j.sajce.2022.08.004
Google Scholar
[22]
X. Tang, C. Fan, G. Zeng, L. Zhong, C. Li, X. Ren, B. Song and X. Liu, Phage-host interactions: The neglected part of biological wastewater treatment, Water Res. (2022)119183.
DOI: 10.1016/j.watres.2022.119183
Google Scholar
[23]
Y. Rong, W. Yan, Z. Wang, X. Hao and G. Guan, An electroactive montmorillonite/polypyrrole ion exchange film: Ultrahigh uptake capacity and ion selectivity for rapid removal of lead ions. J. Hazardous Materials. 2022. 437 (2022)129366.
DOI: 10.1016/j.jhazmat.2022.129366
Google Scholar
[24]
Y. Rong, W. Yan, Z. Wang, X. Hao and G. Guan, Kinetic and thermodynamic investigation on adsorption of lead onto apatite extracted from mixed fish bone. Env. Nanotechnology, Monitoring & Management, 18 (2022)100738.
DOI: 10.1016/j.enmm.2022.100738
Google Scholar
[25]
S. Pérez, M. Ulloa, E. Flórez, N. Acelas, R. Ocampo- Pérez, E. Padilla-Ortega and A. Forgionny, Valorization of lemon peels wastes into a potential adsorbent for simultaneous removal of copper ion (Cu2+) and Congo red from wastewater. Env. Nanotechnology, Monitoring & Manag. 20(2023) 100795.
DOI: 10.1016/j.enmm.2023.100795
Google Scholar
[26]
Y. Zhu, W. Fan, T. Zhou and X. Li, Removal of chelated heavy metals from aqueous solution: A review of current methods and mechanisms. Science of The Total Env. 2019. 678 (2017)253-266.
DOI: 10.1016/j.scitotenv.2019.04.416
Google Scholar
[27]
A. Tahreen, M.S. Jami, and F. Ali, Role of electrocoagulation in wastewater treatment: A developmental review. Journal of Water Process Engineering, 37 (2020)101440.
DOI: 10.1016/j.jwpe.2020.101440
Google Scholar
[28]
Golder, A. K., A. K. Chanda, A. N. Samanta and S. Ray, Removal of Cr(VI) from Aqueous Solution: Electrocoagulation vs Chemical Coagulation. Separation Sci. and Tech. 42(2007) 2177-2193.
DOI: 10.1080/01496390701446464
Google Scholar
[29]
Odunlami, O. A., O. Agboola, E. O. Odiakaose, O. O. Olabode, O. Babalola, O. G. Abatan and I. Owoicho, Treatment of Contaminated Water from Niger Delta Oil Fields with Carbonized Sisal Fibre Doped with Nanosilica from Ofada Rice Husk. J. Ecol, Eng. 23(2022)297-308.
DOI: 10.12911/22998993/150836
Google Scholar
[30]
S.K. Shukla, N. R. S. Al Mushaiqri, H. M. Al Subhi, K. Yoo and H. Al Sadeq, Low-cost activated carbon production from organic waste and its utilization for wastewater treatment. Appl. Water Sci. 10(2020) 62.
DOI: 10.1007/s13201-020-1145-z
Google Scholar
[31]
I. Ali, M. Asim, and T.A. Khan, Low cost adsorbents for the removal of organic pollutants from wastewater. J. Env. Manag. 113(2012)170-183.
DOI: 10.1016/j.jenvman.2012.08.028
Google Scholar
[32]
L. Wang, J. Zhang, R. Zhao, Y, Li, C. Li, C. Zhang, Adsorption of Pb(II) on activated carbon prepared from Polygonum orientale Linn.: Kinetics, isotherms, pH, and ionic strength studies. Bioresour. Technol. 101(2010) 5808-5814.
DOI: 10.1016/j.biortech.2010.02.099
Google Scholar
[33]
M.A.P. Cechinel, S.M.A.G. Ulson de Souza, and A.A. Ulson de Souza, Study of lead (II) adsorption onto activated carbon originating from cow bone. Journal of Cleaner Production, 65 (2014) 342-349.
DOI: 10.1016/j.jclepro.2013.08.020
Google Scholar
[34]
M.J. Ahmed, Application of raw and activated Phragmites australis as potential adsorbents for wastewater treatments. Ecol. Eng. 102 (2017) 262-269.
DOI: 10.1016/j.ecoleng.2017.01.047
Google Scholar
[35]
N. Bu, X. Liu, S. Song, J. Liu, Q. Yang, R. Li, F. Zheng, L. Yan, Q. Zhen and J. Zhang, Synthesis of NaY zeolite from coal gangue and its characterization for lead removal from aqueous solution. Advanced Powder Technol. 2020. 31(7): pp.2699-2710.
DOI: 10.1016/j.apt.2020.04.035
Google Scholar
[36]
U. Habiba, A. M. Afifi, A. Salleh and B. C. Ang, U., et al., Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. J. Hazardous Materials. 322 (2017)182-194.
DOI: 10.1016/j.jhazmat.2016.06.028
Google Scholar
[37]
T.E. Oladimeji, T. E., B. O. Odunoye, F. B. Elehinafe, O. R. Obanla and O. A. Odunlami, Production of activated carbon from sawdust and its efficiency in the treatment of sewage water. Heliyon 7(2021): p. e05960.
DOI: 10.1016/j.heliyon.2021.e05960
Google Scholar
[38]
A. Abdolali, H. H. Ngo, W. Guo, S. Lu, S.S. Chen, N. C. Nguyen, X. Zhang, J. Wang and Y. Wu, A breakthrough biosorbent in removing heavy metals: Equilibrium, kinetic, thermodynamic and mechanism analyses in a lab-scale study. Science of The Total Environment, 542 (2016) 603-611.
DOI: 10.1016/j.scitotenv.2015.10.095
Google Scholar
[39]
Liu, D., Z. Li, Y. Zhu, Z. Li and R. Kumar Recycled chitosan nanofibril as an effective Cu(II), Pb(II) and Cd(II) ionic chelating agent: Adsorption and desorption performance. Carbohydrate Polymers. 111 (2014) 469-476.
DOI: 10.1016/j.carbpol.2014.04.018
Google Scholar
[40]
J. Cai, M. Lei, Q. Zhang, J.-R. He, T. Chen, S. Liu, S.-H. Fu, T.-T. Li, G. Liu and P. Fei Electrospun composite nanofiber mats of Cellulose@Organically modified montmorillonite for heavy metal ion removal: Design, characterization, evaluation of absorption performance. Composites Part A, Applied Science and Manufacturing. 92 (2017) 10-16.
DOI: 10.1016/j.compositesa.2016.10.034
Google Scholar
[41]
B. Bouesso, E. Casali, M. Marchand, E. Lacombe, M. Grateau, S. Barthélémy, E. Billy and H. Demey heavy metal removal from wastewaters by torrefied agricultural biomasses. in European Biomass Conference and Exhibition Proceedings. 2022.
Google Scholar
[42]
A. K.Thakur, R. Singh, R. Teja Pullela and V. Pundir, Green adsorbents for the removal of heavy metals from Wastewater: A review. Materials Today: Proceedings, 2022. 57 (2022) 1468-1472.
DOI: 10.1016/j.matpr.2021.11.373
Google Scholar
[43]
K. Kadirvelu, and C. Namasivayam, Agricutural By-Product as Metal Adsorbent: Sorption of Lead(II) from Aqueous Solution onto Coirpith Carbon. Environmental Technology, 21(2000) 1091-1097.
DOI: 10.1080/09593330.2000.9618995
Google Scholar
[44]
B.G. Alhogbi, Potential of coffee husk biomass waste for the adsorption of Pb(II) ion from aqueous solutions. Sustainable Chemistry and Pharmacy, 6(2017)21-25.
DOI: 10.1016/j.scp.2017.06.004
Google Scholar
[45]
E.M. Nigri, E.M., A. Bhatnagar, and S.D.F. Rocha, Thermal regeneration process of bone char used in the fluoride removal from aqueous solution. J. Cleaner Production. 142 (2017) 3558-3570.
DOI: 10.1016/j.jclepro.2016.10.112
Google Scholar
[46]
Yang, Y., C. Sun, B. Lin and Q. Huang, Surface modified and activated waste bone char for rapid and efficient VOCs adsorption. Chemosphere. 256 (2020) 127054.
DOI: 10.1016/j.chemosphere.2020.127054
Google Scholar
[47]
U.I. Iriarte-Velasco, Sierra, L. Zudaire and J. L. Ayastuy Preparation of a porous biochar from the acid activation of pork bones. Food and Bioproducts Processing. 98 (2016)341-353.
DOI: 10.1016/j.fbp.2016.03.003
Google Scholar
[48]
I. Nwankwo, N. Nwaiwu, and J. Nwabanne, Production and characterization of activated carbon from animal bone. Am. J. Eng. Res. 7 (2018) 335-341.
Google Scholar
[49]
N.A. Yusoff, N. Ngadi, H. Alias and M. Jusoh, Chemically Treated Chicken Bone Waste as an Efficient Adsorbent for Removal of Acetaminophen. Chem. Eng. transactions. 56 (2017) 925-930.
Google Scholar