Production of Activated Carbon from Cow and Goat Bones for the Treatment of Distillery Wastewater

Article Preview

Abstract:

The use of activated carbon for waste water treatment has been established based on sustainability and cost. This study delves into the intricate process of producing activated carbon from cow and goat bones and explores the efficiency of this material in removing contaminants from distillery wastewater. The samples were carbonized at 700°C in a muffle furnace, then crushed in a mortar after cooling. The crushed samples were activated using 0.4M phosphoric acid for 24 hours and washed with distilled water, and finally oven dried. The elemental and microstructural was carried on the prepared activated carbon (AC) samples using X-ray Fluorescence (XRF) and Scanning Electron Microscopy (SEM). The heavy metals in the treated water were tested using Atomic Absorption Spectroscopy (AAS). The AC was used to treat waste water and factors on which adsorption depend, such as contact time (35 minutes and 60 minutes), adsorbent dosage (2.5g and 5g), and initial contaminant concentration (100% and 50%) were varied for each activated carbon sample (cow bone AC, goat bone AC, and a mixture of equal ratios of both). It was reported that activated carbon prepared from animal bones is rich in calcium. Also, chemical activation with phosphoric acid led to an increase in the external surface area of the particles with irregular cavities and pores. AC prepared from the mixture of cow and goat bones was most effective for distillery wastewater purification.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1148)

Pages:

3-14

Citation:

Online since:

May 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Ratna, S. Rastogi, R. Kumar, Current trends for distillery wastewater management and its emerging applications for sustainable environment. J. Env. Manag, 2021. 290 (2021) 112544.

DOI: 10.1016/j.jenvman.2021.112544

Google Scholar

[2] R. Chandra, V. Kumar, S. Tripathi and P. Sharma, Heavy metal phytoextraction potential of native weeds and grasses from endocrine-disrupting chemicals rich complex distillery sludge and their histological observations during in-situ phytoremediation. Ecol. Eng. 111 (2018) 143-156.

DOI: 10.1016/j.ecoleng.2017.12.007

Google Scholar

[3] RMOF Sousa, C. Amaral, JMC. Fernandes, I. Fraga, S. Semitela, F. Braga, AM. Coimbra, AA. Dias, RM. Bezerra, A. Sampaio A., Hazardous impact of vinasse from distilled winemaking by-products in terrestrial plants and aquatic organisms. Ecotoxicology and Env. Safety, 183 (2019) 109493.

DOI: 10.1016/j.ecoenv.2019.109493

Google Scholar

[4] A.H. Sulaymon, B.A. Abid, and J.A. Al-Najar, Removal of lead copper chromium and cobalt ions onto granular activated carbon in batch and fixed-bed adsorbers. Chemical Engineering J. 155(2009) 647-653.

DOI: 10.1016/j.cej.2009.08.021

Google Scholar

[5] K. Li, Z. Zheng, and Y. Li, Characterization and lead adsorption properties of activated carbons prepared from cotton stalk by one-step H3PO4 activation. J. of Hazardous Mat.181(2010) 440-447.

DOI: 10.1016/j.jhazmat.2010.05.030

Google Scholar

[6] J. Li, G. Lin, F. Tan, L. Fu, B. Zeng, S. Wang, T. Hu, L. Zhang, Selective adsorption of mercury ion from water by a novel functionalized magnetic Ti based metal-organic framework composite. J. of Colloid and Interface Sci., 651(2023) 659-668.

DOI: 10.1016/j.jcis.2023.08.022

Google Scholar

[7] Jonas M. Ambrosy, Christoph Pasel, Michael Luckas, Margot Bittig, and Dieter Bathen., A Detailed Investigation of Adsorption Isotherms, Enthalpies, and Kinetics of Mercury Adsorption on Nonimpregnated Activated Carbon. Industrial & Engineering Chemistry Research, 58(2019) 4208-4221.

DOI: 10.1021/acs.iecr.8b05932

Google Scholar

[8] A. E. Burakov, E. V. Galunin, I. V. Burakova, A. E. Kucherova, S. Agarwal, A. G. Tkachev and V. K. Gupta, Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicology and Environmental Safety, 148 (2018) 702-712.

DOI: 10.1016/j.ecoenv.2017.11.034

Google Scholar

[9] A. Abd El Hameed, A. H., W. E. Eweda, K. A. A. Abou-Taleb and H. I. Mira Biosorption of uranium and heavy metals using some local fungi isolated from phosphatic fertilizers. Annals of Agricultural Sciences, 60(2015): pp.345-351.

DOI: 10.1016/j.aoas.2015.10.003

Google Scholar

[10] T.K. Das, T.K. and A. Poater, Review on the Use of Heavy Metal Deposits from Water Treatment Waste towards Catalytic Chemical Syntheses. Int J Mol Sci, 2021. 22(24).

DOI: 10.3390/ijms222413383

Google Scholar

[11] A. Balaria, and S. Schiewer, Assessment of biosorption mechanism for Pb binding by citrus pectin. Separation and Purification Technology, 63(2008) 577-581.

DOI: 10.1016/j.seppur.2008.06.023

Google Scholar

[12] M. Behjati, M. Baghdadi, and A. Karbassi, Removal of mercury from contaminated saline wasters using dithiocarbamate functionalized-magnetic nanocomposite. J. of Env. Managem 213 (2018) 66-78.

DOI: 10.1016/j.jenvman.2018.02.052

Google Scholar

[13] H. Shirkhanloo, O. Mahmood, Osanloo, G. Mehri, H. Hamid, Validation of a new and cost-effective method for mercury vapor removal based on silver nanoparticles coating on micro glassy balls. Atm. Pollution Res. 8(2017) 359-365.

DOI: 10.1016/j.apr.2016.10.004

Google Scholar

[14] P. Sathishkumar, M. Arulkumar, and T. Palvannan, Utilization of agro-industrial waste Jatropha curcas pods as an activated carbon for the adsorption of reactive dye Remazol Brilliant Blue R (RBBR). J. of Cleaner Production. 22(2012) 67-75.

DOI: 10.1016/j.jclepro.2011.09.017

Google Scholar

[15] N. Masood, M. A. Irshad, R. Nawaz, T. Abbas, M. A. Abdel-Maksoud, W. H. AlQahtani, H. AbdElgawad, M. Rizwan and A. H. A. Abeed, Green synthesis, characterization and adsorption of chromium and cadmium from wastewater using cerium oxide nanoparticles; reaction kinetics study. J. of Molecular Structure, 1294 (2023)136563.

DOI: 10.1016/j.molstruc.2023.136563

Google Scholar

[16] F.U. Haider, C. Liqun, J. A. Coulter, S. A. Cheema, J. Wu, R. Zhang, M. Wenjun and M. Farooq Cadmium toxicity in plants: Impacts and remediation strategies, Ecotoxicology and Env. Safety. 211(2021) 111887

DOI: 10.1016/j.ecoenv.2020.111887

Google Scholar

[17] M.A. Irshad, S. Sattar, R. Nawaz, S. A. Al-Hussain, M. Rizwan, A. Bukhari, M. Waseem, A. Irfan, A. Inam and M. E. A. Zaki, Enhancing chromium removal and recovery from industrial wastewater using sustainable and efficient nanomaterial: A review. Ecotoxicology and Env. Safety. 263 (2023) 115231.

DOI: 10.1016/j.ecoenv.2023.115231

Google Scholar

[18] Y. Tadayon, M.E. Bahrololoom, and S. Javadpour, An experimental study of sunflower seed husk and zeolite as adsorbents of Ni(II) ion from industrial wastewater, Water Resources and Industry, 2023. 30: p.100214.

DOI: 10.1016/j.wri.2023.100214

Google Scholar

[19] M. A, H., J. H. S, and H. A. M, Removal of iron from water using hydrogen peroxide. Journal of Env. Sci., 41(2018) 1-17.

Google Scholar

[20] M. Zeng, I. Echols, P. Wang, S. Lei, J. Luo, B. Peng, L. He, L. Zhang, D. Huang, C. Mejia, L. Wang, M. S. Mannan and Z. Cheng, Highly Biocompatible, Underwater Superhydrophilic and Multifunctional Biopolymer Membrane for Efficient Oil–Water Separation and Aqueous Pollutant Removal, ACS Sustainable Chemistry & Engineering, 6(2018) 3879-3887.

DOI: 10.1021/acssuschemeng.7b04219

Google Scholar

[21] F.B. Elehinafe, O. Agboola, A. D. Vershima and G. O. Bamigboye, Insights on the advanced separation processes in water pollution analyses and wastewater treatment – A review. South African J. Chem. Eng. 42(2022)188-200.

DOI: 10.1016/j.sajce.2022.08.004

Google Scholar

[22] X. Tang, C. Fan, G. Zeng, L. Zhong, C. Li, X. Ren, B. Song and X. Liu, Phage-host interactions: The neglected part of biological wastewater treatment, Water Res. (2022)119183.

DOI: 10.1016/j.watres.2022.119183

Google Scholar

[23] Y. Rong, W. Yan, Z. Wang, X. Hao and G. Guan, An electroactive montmorillonite/polypyrrole ion exchange film: Ultrahigh uptake capacity and ion selectivity for rapid removal of lead ions. J. Hazardous Materials. 2022. 437 (2022)129366.

DOI: 10.1016/j.jhazmat.2022.129366

Google Scholar

[24] Y. Rong, W. Yan, Z. Wang, X. Hao and G. Guan, Kinetic and thermodynamic investigation on adsorption of lead onto apatite extracted from mixed fish bone. Env. Nanotechnology, Monitoring & Management, 18 (2022)100738.

DOI: 10.1016/j.enmm.2022.100738

Google Scholar

[25] S. Pérez, M. Ulloa, E. Flórez, N. Acelas, R. Ocampo- Pérez, E. Padilla-Ortega and A. Forgionny, Valorization of lemon peels wastes into a potential adsorbent for simultaneous removal of copper ion (Cu2+) and Congo red from wastewater. Env. Nanotechnology, Monitoring & Manag. 20(2023) 100795.

DOI: 10.1016/j.enmm.2023.100795

Google Scholar

[26] Y. Zhu, W. Fan, T. Zhou and X. Li, Removal of chelated heavy metals from aqueous solution: A review of current methods and mechanisms. Science of The Total Env. 2019. 678 (2017)253-266.

DOI: 10.1016/j.scitotenv.2019.04.416

Google Scholar

[27] A. Tahreen, M.S. Jami, and F. Ali, Role of electrocoagulation in wastewater treatment: A developmental review. Journal of Water Process Engineering, 37 (2020)101440.

DOI: 10.1016/j.jwpe.2020.101440

Google Scholar

[28] Golder, A. K., A. K. Chanda, A. N. Samanta and S. Ray, Removal of Cr(VI) from Aqueous Solution: Electrocoagulation vs Chemical Coagulation. Separation Sci. and Tech. 42(2007) 2177-2193.

DOI: 10.1080/01496390701446464

Google Scholar

[29] Odunlami, O. A., O. Agboola, E. O. Odiakaose, O. O. Olabode, O. Babalola, O. G. Abatan and I. Owoicho, Treatment of Contaminated Water from Niger Delta Oil Fields with Carbonized Sisal Fibre Doped with Nanosilica from Ofada Rice Husk. J. Ecol, Eng. 23(2022)297-308.

DOI: 10.12911/22998993/150836

Google Scholar

[30] S.K. Shukla, N. R. S. Al Mushaiqri, H. M. Al Subhi, K. Yoo and H. Al Sadeq, Low-cost activated carbon production from organic waste and its utilization for wastewater treatment. Appl. Water Sci. 10(2020) 62.

DOI: 10.1007/s13201-020-1145-z

Google Scholar

[31] I. Ali, M. Asim, and T.A. Khan, Low cost adsorbents for the removal of organic pollutants from wastewater. J. Env. Manag. 113(2012)170-183.

DOI: 10.1016/j.jenvman.2012.08.028

Google Scholar

[32] L. Wang, J. Zhang, R. Zhao, Y, Li, C. Li, C. Zhang, Adsorption of Pb(II) on activated carbon prepared from Polygonum orientale Linn.: Kinetics, isotherms, pH, and ionic strength studies. Bioresour. Technol. 101(2010) 5808-5814.

DOI: 10.1016/j.biortech.2010.02.099

Google Scholar

[33] M.A.P. Cechinel, S.M.A.G. Ulson de Souza, and A.A. Ulson de Souza, Study of lead (II) adsorption onto activated carbon originating from cow bone. Journal of Cleaner Production, 65 (2014) 342-349.

DOI: 10.1016/j.jclepro.2013.08.020

Google Scholar

[34] M.J. Ahmed, Application of raw and activated Phragmites australis as potential adsorbents for wastewater treatments. Ecol. Eng. 102 (2017) 262-269.

DOI: 10.1016/j.ecoleng.2017.01.047

Google Scholar

[35] N. Bu, X. Liu, S. Song, J. Liu, Q. Yang, R. Li, F. Zheng, L. Yan, Q. Zhen and J. Zhang, Synthesis of NaY zeolite from coal gangue and its characterization for lead removal from aqueous solution. Advanced Powder Technol. 2020. 31(7): pp.2699-2710.

DOI: 10.1016/j.apt.2020.04.035

Google Scholar

[36] U. Habiba, A. M. Afifi, A. Salleh and B. C. Ang, U., et al., Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. J. Hazardous Materials. 322 (2017)182-194.

DOI: 10.1016/j.jhazmat.2016.06.028

Google Scholar

[37] T.E. Oladimeji, T. E., B. O. Odunoye, F. B. Elehinafe, O. R. Obanla and O. A. Odunlami, Production of activated carbon from sawdust and its efficiency in the treatment of sewage water. Heliyon 7(2021): p. e05960.

DOI: 10.1016/j.heliyon.2021.e05960

Google Scholar

[38] A. Abdolali, H. H. Ngo, W. Guo, S. Lu, S.S. Chen, N. C. Nguyen, X. Zhang, J. Wang and Y. Wu, A breakthrough biosorbent in removing heavy metals: Equilibrium, kinetic, thermodynamic and mechanism analyses in a lab-scale study. Science of The Total Environment, 542 (2016) 603-611.

DOI: 10.1016/j.scitotenv.2015.10.095

Google Scholar

[39] Liu, D., Z. Li, Y. Zhu, Z. Li and R. Kumar Recycled chitosan nanofibril as an effective Cu(II), Pb(II) and Cd(II) ionic chelating agent: Adsorption and desorption performance. Carbohydrate Polymers. 111 (2014) 469-476.

DOI: 10.1016/j.carbpol.2014.04.018

Google Scholar

[40] J. Cai, M. Lei, Q. Zhang, J.-R. He, T. Chen, S. Liu, S.-H. Fu, T.-T. Li, G. Liu and P. Fei Electrospun composite nanofiber mats of Cellulose@Organically modified montmorillonite for heavy metal ion removal: Design, characterization, evaluation of absorption performance. Composites Part A, Applied Science and Manufacturing. 92 (2017) 10-16.

DOI: 10.1016/j.compositesa.2016.10.034

Google Scholar

[41] B. Bouesso, E. Casali, M. Marchand, E. Lacombe, M. Grateau, S. Barthélémy, E. Billy and H. Demey heavy metal removal from wastewaters by torrefied agricultural biomasses. in European Biomass Conference and Exhibition Proceedings. 2022.

Google Scholar

[42] A. K.Thakur, R. Singh, R. Teja Pullela and V. Pundir, Green adsorbents for the removal of heavy metals from Wastewater: A review. Materials Today: Proceedings, 2022. 57 (2022) 1468-1472.

DOI: 10.1016/j.matpr.2021.11.373

Google Scholar

[43] K. Kadirvelu, and C. Namasivayam, Agricutural By-Product as Metal Adsorbent: Sorption of Lead(II) from Aqueous Solution onto Coirpith Carbon. Environmental Technology, 21(2000) 1091-1097.

DOI: 10.1080/09593330.2000.9618995

Google Scholar

[44] B.G. Alhogbi, Potential of coffee husk biomass waste for the adsorption of Pb(II) ion from aqueous solutions. Sustainable Chemistry and Pharmacy, 6(2017)21-25.

DOI: 10.1016/j.scp.2017.06.004

Google Scholar

[45] E.M. Nigri, E.M., A. Bhatnagar, and S.D.F. Rocha, Thermal regeneration process of bone char used in the fluoride removal from aqueous solution. J. Cleaner Production. 142 (2017) 3558-3570.

DOI: 10.1016/j.jclepro.2016.10.112

Google Scholar

[46] Yang, Y., C. Sun, B. Lin and Q. Huang, Surface modified and activated waste bone char for rapid and efficient VOCs adsorption. Chemosphere. 256 (2020) 127054.

DOI: 10.1016/j.chemosphere.2020.127054

Google Scholar

[47] U.I. Iriarte-Velasco, Sierra, L. Zudaire and J. L. Ayastuy Preparation of a porous biochar from the acid activation of pork bones. Food and Bioproducts Processing. 98 (2016)341-353.

DOI: 10.1016/j.fbp.2016.03.003

Google Scholar

[48] I. Nwankwo, N. Nwaiwu, and J. Nwabanne, Production and characterization of activated carbon from animal bone. Am. J. Eng. Res. 7 (2018) 335-341.

Google Scholar

[49] N.A. Yusoff, N. Ngadi, H. Alias and M. Jusoh, Chemically Treated Chicken Bone Waste as an Efficient Adsorbent for Removal of Acetaminophen. Chem. Eng. transactions. 56 (2017) 925-930.

Google Scholar