[1]
Du Preez, M., et al., Assessing knowledge and use practices of plastic food packaging among young adults in South Africa: concerns about chemicals and health. International Journal of Environmental Research and Public Health, 2021. 18(20): p.10576.
DOI: 10.3390/ijerph182010576
Google Scholar
[2]
Geyer, R., J.R. Jambeck, and K.L. Law, Production, use, and fate of all plastics ever made. Science advances, 2017. 3(7): p. e1700782.
DOI: 10.1126/sciadv.1700782
Google Scholar
[3]
Sadan, Z. and L. De Kock, Plastics: Facts and Futures: Moving beyond pollution management towards a circular plastics economy in South Africa. WWF South Africa, 2020.
Google Scholar
[4]
Ezati, P., et al., Cellulose nanofiber-based coating film integrated with nitrogen-functionalized carbon dots for active packaging applications of fresh fruit. Postharvest Biology and Technology, 2022. 186: p.111845.
DOI: 10.1016/j.postharvbio.2022.111845
Google Scholar
[5]
Kumar, L. and K.K. Gaikwad, Carbon dots for food packaging applications. Sustainable Food Technology, 2023. 1(2): pp.185-199.
DOI: 10.1039/d2fb00020b
Google Scholar
[6]
CHEJARA, V.K., et al., The current and future potential geographical distribution of Hyparrhenia hirta. Weed Research, 2010. 50(2): pp.174-184.
DOI: 10.1111/j.1365-3180.2010.00765.x
Google Scholar
[7]
Prinsloo, H., B. Reilly, and W. Myburgh, Identifying potential protected areas in the Grassland Biome of South Africa. South African Journal of Science, 2021. 117(3-4): pp.1-6.
DOI: 10.17159/sajs.2021/7507
Google Scholar
[8]
Listyanda, R.F., M.W. Wildan, and M.N. Ilman, Preparation and characterization of cellulose nanocrystal extracted from ramie fibers by sulfuric acid hydrolysis. Heliyon, 2020. 6(11).
DOI: 10.1016/j.heliyon.2020.e05486
Google Scholar
[9]
Deng, Z., J. Jung, and Y. Zhao, Development, characterization, and validation of chitosan adsorbed cellulose nanofiber (CNF) films as water resistant and antibacterial food contact packaging. LWT-Food Science and Technology, 2017. 83: pp.132-140.
DOI: 10.1016/j.lwt.2017.05.013
Google Scholar
[10]
Sharma, N., et al., Rice straw-derived cellulose: a comparative study of various pre-treatment technologies and its conversion to nanofibres. Scientific Reports, 2023. 13(1): p.16327.
DOI: 10.1038/s41598-023-43535-7
Google Scholar
[11]
Ndwandwa, N., et al., Extraction and characterization of cellulose nanofibers from yellow thatching grass (Hyparrhenia filipendula) straws via acid hydrolysis. Waste and Biomass Valorization, 2023. 14(8): pp.2599-2608.
DOI: 10.1007/s12649-022-02014-2
Google Scholar
[12]
Nandiyanto, A.B.D., R. Oktiani, and R. Ragadhita, How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology, 2019. 4(1): pp.97-118.
DOI: 10.17509/ijost.v4i1.15806
Google Scholar
[13]
Ayaa, F., et al., Potential of invasive shrubs for energy applications in Uganda. Energy, Ecology and Environment, 2022. 7(6): pp.563-576.
DOI: 10.1007/s40974-022-00255-4
Google Scholar
[14]
Gorgieva, S., R. Vogrinčič, and V. Kokol, Polydispersity and assembling phenomena of native and reactive dye-labelled nanocellulose. Cellulose, 2015. 22: pp.3541-3558.
DOI: 10.1007/s10570-015-0755-3
Google Scholar
[15]
Zhang, M., et al., Hydrophobic precipitation of carbonaceous spheres from fructose by a hydrothermal process. Carbon, 2012. 50(6): pp.2155-2161.
DOI: 10.1016/j.carbon.2012.01.024
Google Scholar
[16]
Khavlyuk, P.D., et al., The influence of thermal treatment conditions (solvothermal versus microwave) and solvent polarity on the morphology and emission of phloroglucinol-based nitrogen-doped carbon dots. Nanoscale, 2021. 13(5): pp.3070-3078.
DOI: 10.1039/d0nr07852b
Google Scholar
[17]
Huo, Y., et al., Solvothermal synthesis and applications of micro/nano carbons: A review. Chemical Engineering Journal, 2023. 451: p.138572.
DOI: 10.1016/j.cej.2022.138572
Google Scholar
[18]
Wagh, P., et al., Hydrophobicity measurement studies of silica aerogels using ftir spectroscopy, weight difference method, contact angle method and kf titration method. Journal of Chemical, Biological and Physical Sciences (JCBPS), 2015. 5(3): p.2350.
Google Scholar
[19]
Zhang, Y., et al., Solid-State Fluorescent Carbon Dots with Hydrophobic Modification Induced Red Emission for White Light-Emitting Diodes. Inorganic Chemistry, 2024.
DOI: 10.1021/acs.inorgchem.4c03150.s001
Google Scholar
[20]
Ahmadi, S., et al., Development of active packaging material based on polycaprolactone/hydroxypropyl methylcellulose nanofibers containing carbon dot nanoparticles for meat preservation. Lwt, 2024. 197: p.115913.
DOI: 10.1016/j.lwt.2024.115913
Google Scholar
[21]
Agarwal, U.P., 1064 nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials. Frontiers in plant science, 2014. 5: p.490.
DOI: 10.3389/fpls.2014.00490
Google Scholar
[22]
Agarwal, U.P., et al., New cellulose crystallinity estimation method that differentiates between organized and crystalline phases. Carbohydrate polymers, 2018. 190: pp.262-270.
DOI: 10.1016/j.carbpol.2018.03.003
Google Scholar
[23]
Li, S., et al., Fluorescent N-doped carbon dots from bacterial cellulose for highly sensitive bacterial detection. BioResources, 2020. 15(1): p.78.
DOI: 10.15376/biores.15.1.78-88
Google Scholar
[24]
Li, T.-x., et al., Unraveling fluorescent mechanism of biomass-sourced carbon dots based on three major components: Cellulose, lignin, and protein. Bioresource Technology, 2024. 394: p.130268.
DOI: 10.1016/j.biortech.2023.130268
Google Scholar
[25]
Hallaji, Z., Z. Bagheri, and B. Ranjbar, One-step solvothermal synthesis of red chiral carbon dots for multioptical detection of water in organic solvents. ACS Applied Nano Materials, 2023. 6(5): pp.3202-3210.
DOI: 10.1021/acsanm.2c04466
Google Scholar
[26]
Santos, T.A., et al., Release of papain incorporated in chitosan films reinforced with cellulose nanofibers. Journal of Food Processing and Preservation, 2021. 45(11): p. e15900.
DOI: 10.1111/jfpp.15900
Google Scholar
[27]
Khan, A., et al., Carrageenan-based multifunctional packaging films containing Zn-carbon dots/anthocyanin derived from Kohlrabi peel for monitoring quality and extending the shelf life of shrimps. Food Chemistry, 2024. 432: p.137215.
DOI: 10.1016/j.foodchem.2023.137215
Google Scholar
[28]
Soni, B., M.W. Schilling, and B. Mahmoud, Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties. Carbohydrate polymers, 2016. 151: pp.779-789.
DOI: 10.1016/j.carbpol.2016.06.022
Google Scholar
[29]
Wen, N., et al., Emerging flexible sensors based on nanomaterials: recent status and applications. Journal of Materials Chemistry A, 2020. 8(48): pp.25499-25527.
DOI: 10.1039/d0ta09556g
Google Scholar
[30]
Chen, S., et al., Photodynamic antibacterial chitosan/nitrogen-doped carbon dots composite packaging film for food preservation applications. Carbohydrate Polymers, 2023. 314: p.120938.
DOI: 10.1016/j.carbpol.2023.120938
Google Scholar
[31]
Konwar, A., et al., Green chitosan–carbon dots nanocomposite hydrogel film with superior properties. Carbohydrate polymers, 2015. 115: pp.238-245.
DOI: 10.1016/j.carbpol.2014.08.021
Google Scholar
[32]
Cui, C., et al., Hydrophobic biopolymer-based films: Strategies, properties, and food applications. Food Engineering Reviews, 2023. 15(2): pp.360-379.
DOI: 10.1007/s12393-023-09342-6
Google Scholar
[33]
Wu, T., et al., Mechanical behavior of transparent nanofibrillar cellulose–chitosan nanocomposite films in dry and wet conditions. journal of the mechanical behavior of biomedical materials, 2014. 32: pp.279-286.
DOI: 10.1016/j.jmbbm.2014.01.014
Google Scholar
[34]
Ponnusamy, P.G., J. Sundaram, and S. Mani, Preparation and characterization of citric acid crosslinked chitosan‐cellulose nanofibrils composite films for packaging applications. Journal of Applied Polymer Science, 2022. 139(17): p.52017.
DOI: 10.1002/app.52017
Google Scholar
[35]
Sridhar, A.S., L.A. Berglund, and J. Wohlert, Wetting of native and acetylated cellulose by water and organic liquids from atomistic simulations. Cellulose, 2023. 30(13): pp.8089-8106.
DOI: 10.1007/s10570-023-05352-z
Google Scholar
[36]
Gan, P.G., et al., Water resistance and biodegradation properties of conventionally-heated and microwave-cured cross-linked cellulose nanocrystal/chitosan composite films. Polymer Degradation and Stability, 2021. 188: p.109563.
DOI: 10.1016/j.polymdegradstab.2021.109563
Google Scholar