[1]
Y. Bao, X. Gao, Y. Wu, M. Sun, G. Li, Research Progress of Armor Protection Materials, Journal of Physics: Conference Series. 1855 (2021) 1.
Google Scholar
[2]
A. K. Singh, R. J. H. Wanhill, N. Eswara Prasad, Lightweight Ballistic Armours for Aero-Vehicle Protection, in Aerospace Materials and Material Technologies, Singapore: Springer Singapore. 2017, pp.541-557.
DOI: 10.1007/978-981-10-2143-5_25
Google Scholar
[3]
H. Kamel, Review of Design Techniques of Armored Vehicles for Protection Against Blast from Improvised Explosive Devices, in Volume 13: Safety Engineering, Risk, and Reliability Analysis. 2019.
DOI: 10.1115/imece2019-10227
Google Scholar
[4]
B. B. Singh, G. Sukumar, P. P. Senthil, P. K. Jena, P. R. S. Reddy, K. Siva Kumar, V. Madhu, G. M. Reddy, Future Armour Materials and Technologies for Combat Platforms, Defence Science Journal. 67 (2017) 412-419.
DOI: 10.14429/dsj.67.11468
Google Scholar
[5]
V. Sánchez Gálvez, L. Sánchez Paradela, Analysis of failure of add-on armour for vehicle protection against ballistic impact, Engineering Failure Analysis. 16 (2009) 1837-1845.
DOI: 10.1016/j.engfailanal.2008.09.007
Google Scholar
[6]
E. C. Tsirogiannis, E. Daskalakis, C. Vogiatzis, F. Psarommatis, P. Bartolo, Advanced composite armor protection systems for military vehicles: Design methodology, ballistic testing, and comparison, Composites Science and Technology. 251 (2024).
DOI: 10.1016/j.compscitech.2024.110486
Google Scholar
[7]
J. Viliš, R. Vítek, J. Zouhar, M. Stejskal, V. Neumann, Experimental Investigation of Armour (Armox-Aramid-UHMWPE), Manufacturing Technology. 23 (2023) 935-948.
DOI: 10.21062/mft.2023.083
Google Scholar
[8]
H. A. Colorado, C. A. Cardenas, E. I. Gutierrez-Velazquez, J. P. Escobedo, S. N. Monteiro, Additive manufacturing in armor and military applications: research, materials, processing technologies, perspectives, and challenges, Journal of Materials Research and Technology. 27 (2023) 3900-3913.
DOI: 10.1016/j.jmrt.2023.11.030
Google Scholar
[9]
W. Zou, Recent advancements in ballistic protection - a review, Journal of Student Research. 13 (2024) 1.
Google Scholar
[10]
Z. Tian, H. Wu, C. Tan, H. Dong, M. Li, F. Huang, Dynamic Mechanical Properties of TC11 Titanium Alloys Fabricated by Wire Arc Additive Manufacturing, Materials. 15 (2022) 11.
DOI: 10.3390/ma15113917
Google Scholar
[11]
M. Kristoffersen, M. Costas, T. Koenis, V. Brøtan, C. O. Paulsen, T. Børvik, On the ballistic perforation resistance of additive manufactured AlSi10Mg aluminium plates, International Journal of Impact Engineering. 137 (2020).
DOI: 10.1016/j.ijimpeng.2019.103476
Google Scholar
[12]
P. Zochowski, M. Bajkowski, R. Grygoruk, M. Magier, W. Burian, D. Pyka, M. Bocian, K. Jamroziak, Ballistic Impact Resistance of Bulletproof Vest Inserts Containing Printed Titanium Structures, Metals. 11 (2021) 2.
DOI: 10.3390/met11020225
Google Scholar
[13]
L. Zhou, J. Miller, J. Vezza, M. Mayster, M. Raffay, Q. Justice, Z. Al Tamimi, G. Hansotte, L. D. Sunkara, J. Bernat, Additive Manufacturing: A Comprehensive Review, Sensors. 24 (2024) 9.
DOI: 10.3390/s24092668
Google Scholar
[14]
T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering. 143 (2018) 172-196.
DOI: 10.1016/j.compositesb.2018.02.012
Google Scholar
[15]
G. N. Mhetre, V. S. Jadhav, S. P. Deshmukh, C. M. Thakar, A Review on Additive Manufacturing Technology, ECS Transactions. 107 (2022) 15355-15374.
DOI: 10.1149/10701.15355ecst
Google Scholar
[16]
M. I. Hossain, M. S. Khan, I. K. Khan, K. R. Hossain, Y. He, X. Wang, TECHNOLOGY OF ADDITIVE MANUFACTURING: A COMPREHENSIVE REVIEW, Kufa Journal of Engineering, 15 (2024) 108-146.
DOI: 10.30572/2018/kje/150108
Google Scholar
[17]
S. K. Parupelli, S. Desai, A Comprehensive Review of Additive Manufacturing (3D Printing): Processes, Applications and Future Potential, American Journal of Applied Sciences. 16 (2019) 244-272.
DOI: 10.3844/ajassp.2019.244.272
Google Scholar
[18]
W. E. Frazier, Metal Additive Manufacturing: A Review, Journal of Materials Engineering and Performance. 23 (2014) 1917-1928.
Google Scholar
[19]
A. Wiberg, J. Persson, J. Ölvander, Design for additive manufacturing – a review of available design methods and software, Rapid Prototyping Journal. 25 (2019) 1080-1094.
DOI: 10.1108/rpj-10-2018-0262
Google Scholar
[20]
A. Shah, R. Aliyev, H. Zeidler, S. Krinke, A Review of the Recent Developments and Challenges in Wire Arc Additive Manufacturing (WAAM) Process, Journal of Manufacturing and Materials Processing. 7 (2023) 3.
DOI: 10.3390/jmmp7030097
Google Scholar
[21]
J. -J. Cheng, C. Xu, T. -Y. Zhang, S. He, K. -H. Wang, Microstructure and dynamic mechanical behavior of wire-arc additive manufactured high-strength steel, Journal of Materials Research and Technology. 25 (2023) 6099-6110.
DOI: 10.1016/j.jmrt.2023.07.062
Google Scholar
[22]
A. Hamrani, F. Z. Bouarab, A. Agarwal, K. Ju, H. Akbarzadeh, Advancements and applications of multiple wire processes in additive manufacturing: a comprehensive systematic review, Virtual and Physical Prototyping. 18 (2023) 1.
DOI: 10.1080/17452759.2023.2273303
Google Scholar
[23]
H. Pant, A. Arora, G. S. Gopakumar, U. Chadha, A. Saeidi, A. E. Patterson, Applications of wire arc additive manufacturing (WAAM) for aerospace component manufacturing, The International Journal of Advanced Manufacturing Technology. 127 (2023) 4995-5011.
DOI: 10.1007/s00170-023-11623-7
Google Scholar
[24]
M. Costas, M. Edwards-Mowforth, M. Kristoffersen, F. Teixeira-Dias, V. Brøtan, C. O. Paulsen, T. Børvik, Ballistic impact resistance of additive manufactured high-strength maraging steel: An experimental study, International Journal of Protective Structures. 12 (2021) 577-603.
DOI: 10.1177/20414196211035486
Google Scholar
[25]
ISO 6507-1:2023, Metallic Materials-Vickers Hardness Test-Part 1: Test Method. The International Organization for Standardization: Geneva, Switzerland, 2023.
Google Scholar
[26]
Hardox 450. SSAB. Datasheet Hardox 450. Sweden: Stockholm, Oxelösund. Available online: https://www.ssab.com/en/brands-and-products/hardox?_gl=1*1i19hoi*_up*MQ.. &gclid=Cj0KCQjwmt24BhDPARIsAJFYKk3lVn5fP7R108-wxZev4EhIZVc1UzURKLNv1PsDWobUl-FrtJqjhg0aApMmEALw_wcB (Accessed 4 October 2024).
Google Scholar
[27]
AEP-55, STANAG 4569, Protection Levels for Occupants of Logistic and Light Armored Vehicles. Part 1-4: General-Annex A, First Edition. NATO: Brussels, Belgium, 2005.
Google Scholar