Comparative Analysis of Metal Components Manufactured by WAAM Technology for the Strike Face Layer of Ballistic Protection

Article Preview

Abstract:

In the field of ballistic protection systems, Wire Arc Additive Manufacturing (WAAM) technology represents an innovative approach. WAAM offers a novel solution for producing complex components in ballistic protection systems. The process involves using an electric arc to melt metal wire, which is deposited layer by layer to form the desired structure. This method enables the creation of intricate geometries, presenting new possibilities for enhancing the ballistic resistance of protective systems. In this study, WAAM technology was employed to manufacture strike face layers for ballistic protection, with two types of welding wires selected to fabricate bimetallic composites. The produced components were evaluated in three configurations (COW, MCH, and Bim), which were subjected to ballistic testing with 7.62 mm FMJ M80 projectiles in accordance with the NATO AEP-55 STANAG 4569 standard. The results revealed that configuration II (MCH) exhibited complete ballistic resistance, meeting NATO AEP-55 STANAG 4569 level 1, while configuration III (Bim) demonstrated a higher velocity reduction compared to configuration I (COW).

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1151)

Pages:

3-12

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Bao, X. Gao, Y. Wu, M. Sun, G. Li, Research Progress of Armor Protection Materials, Journal of Physics: Conference Series. 1855 (2021) 1.

Google Scholar

[2] A. K. Singh, R. J. H. Wanhill, N. Eswara Prasad, Lightweight Ballistic Armours for Aero-Vehicle Protection, in Aerospace Materials and Material Technologies, Singapore: Springer Singapore. 2017, pp.541-557.

DOI: 10.1007/978-981-10-2143-5_25

Google Scholar

[3] H. Kamel, Review of Design Techniques of Armored Vehicles for Protection Against Blast from Improvised Explosive Devices, in Volume 13: Safety Engineering, Risk, and Reliability Analysis. 2019.

DOI: 10.1115/imece2019-10227

Google Scholar

[4] B. B. Singh, G. Sukumar, P. P. Senthil, P. K. Jena, P. R. S. Reddy, K. Siva Kumar, V. Madhu, G. M. Reddy, Future Armour Materials and Technologies for Combat Platforms, Defence Science Journal. 67 (2017) 412-419.

DOI: 10.14429/dsj.67.11468

Google Scholar

[5] V. Sánchez Gálvez, L. Sánchez Paradela, Analysis of failure of add-on armour for vehicle protection against ballistic impact, Engineering Failure Analysis. 16 (2009) 1837-1845.

DOI: 10.1016/j.engfailanal.2008.09.007

Google Scholar

[6] E. C. Tsirogiannis, E. Daskalakis, C. Vogiatzis, F. Psarommatis, P. Bartolo, Advanced composite armor protection systems for military vehicles: Design methodology, ballistic testing, and comparison, Composites Science and Technology. 251 (2024).

DOI: 10.1016/j.compscitech.2024.110486

Google Scholar

[7] J. Viliš, R. Vítek, J. Zouhar, M. Stejskal, V. Neumann, Experimental Investigation of Armour (Armox-Aramid-UHMWPE), Manufacturing Technology. 23 (2023) 935-948.

DOI: 10.21062/mft.2023.083

Google Scholar

[8] H. A. Colorado, C. A. Cardenas, E. I. Gutierrez-Velazquez, J. P. Escobedo, S. N. Monteiro, Additive manufacturing in armor and military applications: research, materials, processing technologies, perspectives, and challenges, Journal of Materials Research and Technology. 27 (2023) 3900-3913.

DOI: 10.1016/j.jmrt.2023.11.030

Google Scholar

[9] W. Zou, Recent advancements in ballistic protection - a review, Journal of Student Research. 13 (2024) 1.

Google Scholar

[10] Z. Tian, H. Wu, C. Tan, H. Dong, M. Li, F. Huang, Dynamic Mechanical Properties of TC11 Titanium Alloys Fabricated by Wire Arc Additive Manufacturing, Materials. 15 (2022) 11.

DOI: 10.3390/ma15113917

Google Scholar

[11] M. Kristoffersen, M. Costas, T. Koenis, V. Brøtan, C. O. Paulsen, T. Børvik, On the ballistic perforation resistance of additive manufactured AlSi10Mg aluminium plates, International Journal of Impact Engineering. 137 (2020).

DOI: 10.1016/j.ijimpeng.2019.103476

Google Scholar

[12] P. Zochowski, M. Bajkowski, R. Grygoruk, M. Magier, W. Burian, D. Pyka, M. Bocian, K. Jamroziak, Ballistic Impact Resistance of Bulletproof Vest Inserts Containing Printed Titanium Structures, Metals. 11 (2021) 2.

DOI: 10.3390/met11020225

Google Scholar

[13] L. Zhou, J. Miller, J. Vezza, M. Mayster, M. Raffay, Q. Justice, Z. Al Tamimi, G. Hansotte, L. D. Sunkara, J. Bernat, Additive Manufacturing: A Comprehensive Review, Sensors. 24 (2024) 9.

DOI: 10.3390/s24092668

Google Scholar

[14] T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering. 143 (2018) 172-196.

DOI: 10.1016/j.compositesb.2018.02.012

Google Scholar

[15] G. N. Mhetre, V. S. Jadhav, S. P. Deshmukh, C. M. Thakar, A Review on Additive Manufacturing Technology, ECS Transactions. 107 (2022) 15355-15374.

DOI: 10.1149/10701.15355ecst

Google Scholar

[16] M. I. Hossain, M. S. Khan, I. K. Khan, K. R. Hossain, Y. He, X. Wang, TECHNOLOGY OF ADDITIVE MANUFACTURING: A COMPREHENSIVE REVIEW, Kufa Journal of Engineering, 15 (2024) 108-146.

DOI: 10.30572/2018/kje/150108

Google Scholar

[17] S. K. Parupelli, S. Desai, A Comprehensive Review of Additive Manufacturing (3D Printing): Processes, Applications and Future Potential, American Journal of Applied Sciences. 16 (2019) 244-272.

DOI: 10.3844/ajassp.2019.244.272

Google Scholar

[18] W. E. Frazier, Metal Additive Manufacturing: A Review, Journal of Materials Engineering and Performance. 23 (2014) 1917-1928.

Google Scholar

[19] A. Wiberg, J. Persson, J. Ölvander, Design for additive manufacturing – a review of available design methods and software, Rapid Prototyping Journal. 25 (2019) 1080-1094.

DOI: 10.1108/rpj-10-2018-0262

Google Scholar

[20] A. Shah, R. Aliyev, H. Zeidler, S. Krinke, A Review of the Recent Developments and Challenges in Wire Arc Additive Manufacturing (WAAM) Process, Journal of Manufacturing and Materials Processing. 7 (2023) 3.

DOI: 10.3390/jmmp7030097

Google Scholar

[21] J. -J. Cheng, C. Xu, T. -Y. Zhang, S. He, K. -H. Wang, Microstructure and dynamic mechanical behavior of wire-arc additive manufactured high-strength steel, Journal of Materials Research and Technology. 25 (2023) 6099-6110.

DOI: 10.1016/j.jmrt.2023.07.062

Google Scholar

[22] A. Hamrani, F. Z. Bouarab, A. Agarwal, K. Ju, H. Akbarzadeh, Advancements and applications of multiple wire processes in additive manufacturing: a comprehensive systematic review, Virtual and Physical Prototyping. 18 (2023) 1.

DOI: 10.1080/17452759.2023.2273303

Google Scholar

[23] H. Pant, A. Arora, G. S. Gopakumar, U. Chadha, A. Saeidi, A. E. Patterson, Applications of wire arc additive manufacturing (WAAM) for aerospace component manufacturing, The International Journal of Advanced Manufacturing Technology. 127 (2023) 4995-5011.

DOI: 10.1007/s00170-023-11623-7

Google Scholar

[24] M. Costas, M. Edwards-Mowforth, M. Kristoffersen, F. Teixeira-Dias, V. Brøtan, C. O. Paulsen, T. Børvik, Ballistic impact resistance of additive manufactured high-strength maraging steel: An experimental study, International Journal of Protective Structures. 12 (2021) 577-603.

DOI: 10.1177/20414196211035486

Google Scholar

[25] ISO 6507-1:2023, Metallic Materials-Vickers Hardness Test-Part 1: Test Method. The International Organization for Standardization: Geneva, Switzerland, 2023.

Google Scholar

[26] Hardox 450. SSAB. Datasheet Hardox 450. Sweden: Stockholm, Oxelösund. Available online: https://www.ssab.com/en/brands-and-products/hardox?_gl=1*1i19hoi*_up*MQ.. &gclid=Cj0KCQjwmt24BhDPARIsAJFYKk3lVn5fP7R108-wxZev4EhIZVc1UzURKLNv1PsDWobUl-FrtJqjhg0aApMmEALw_wcB (Accessed 4 October 2024).

Google Scholar

[27] AEP-55, STANAG 4569, Protection Levels for Occupants of Logistic and Light Armored Vehicles. Part 1-4: General-Annex A, First Edition. NATO: Brussels, Belgium, 2005.

Google Scholar