Coupon-Level Experimental Material Screening of Carbon Fiber-Reinforced Polymers under Thermal Runaway Conditions for eVehicle Applications

Article Preview

Abstract:

The shift towards electric mobility needs extensive research into battery modules, particularly in relation to safety due to the high energy density of Li-ion batteries. Battery casings must be able to protect the module from external impacts while also containing any potential danger in the event of internal failure. This study presents a comprehensive qualitative screening of thermoset and thermoplastic carbon fiber-reinforced polymers (FRP) used in automotive and aerospace applications under thermal runaway (TR) conditions, to identify suitable materials for battery enclosures. The test setup is an adaptation of the UL 2596 standard with a hexagonal array of seven 21700-format cells. The results indicate that CF-PEEK, CF-PPS, and an aerospace-grade epoxy, CF-EPstr (primary structural material) effectively contain the TR with low damage using the current setup. Medium damage was observed in CF-PC, CF-bio-based phenolic, while non-structural CF-epoxy and CF-PA6 failed to contain the TR. This qualitative study serves as an initial screening process to narrow down materials for further in-depth analysis, emphasizing the need for reproducible TR events for accurate assessment.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1152)

Pages:

3-10

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Chen, Y. Kang, Y. Zhao, L. Wang, J. Liu, Y. Li, Z. Liang, X. He, X. Li, N. Tavajohi, B. Li, A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards, J. Energy Chem. 59 (2021) 83–99.

DOI: 10.1016/j.jechem.2020.10.017

Google Scholar

[2] EUROCAE, Guidance On Determining Failure Modes In Lithium-Ion Cells For Evtol Applications, 2023.

Google Scholar

[3] W.Q. Walker, J.J. Darst, D.P. Finegan, G.A. Bayles, K.L. Johnson, E.C. Darcy, S.L. Rickman, Decoupling of heat generated from ejected and non-ejected contents of 18650-format lithium-ion cells using statistical methods, J. Power Sources. 415 (2019) 207–218.

DOI: 10.1016/j.jpowsour.2018.10.099

Google Scholar

[4] A. Nummy, Introduction of a Battery Enclosure Thermal Runaway Material Screening Program for Electric Vehicles: Background and Requirements, 2021.

Google Scholar

[5] C.C. Höhne, V. Gettwert, F. Frank, S. Kilian, A. Menrath, Bench-scale fuel fire test for materials of rechargeable energy storage system housings, J. Therm. Anal. Calorim. 148 (2023) 305–313.

DOI: 10.1007/s10973-022-11725-6

Google Scholar

[6] UL, UL 2596 Test Method for Thermal and Mechanical Performance of Battery Enclosure Materials, 2022.

Google Scholar

[7] J.G. Quintiere, On a method to mitigate thermal runaway and propagation in packages of lithium ion batteries, Fire Saf. J. 130 (2022).

DOI: 10.1016/j.firesaf.2022.103573

Google Scholar

[8] A.P. Mouritz, Fire resistance of aircraft composite laminates, J. Mater. Sci. Lett. 22 (2003) 1507–1509.

Google Scholar

[9] A.P. Mouritz, Fire Safety of Advanced Composites for Aircraft, Australian Transport Safety Bureau Research and Analysis Report, 2006.

Google Scholar

[10] J. Sterling, L. Tattersall, N. Bamber, F. De Cola, A. Murphy, S.L.J. Millen, Composite structure failure analysis post Lithium-Ion battery fire, Eng. Fail. Anal. 160 (2024) 108163.

DOI: 10.1016/j.engfailanal.2024.108163

Google Scholar

[11] B.K. Kandola, A.R. Horrocks, M.R. Rashid, Effect Of Reinforcing Element On Burning Behaviour Of Fibre-Reinforced Epoxy Composites, 2006.

Google Scholar

[12] Y.M. Ghazzawi, A.F. Osorio, M.T. Heitzmann, The effect of fibre length and fibre type on the fire performance of thermoplastic composites: The behaviour of polycarbonate as an example of a charring matrix, Constr. Build. Mater. 234 (2020).

DOI: 10.1016/j.conbuildmat.2019.117889

Google Scholar

[13] Z. Kovács, A. Toldy, Synergistic flame retardant coatings for carbon fibre-reinforced polyamide 6 composites based on expandable graphite, red phosphorus, and magnesium oxide, Polym. Degrad. Stab. 222 (2024).

DOI: 10.1016/j.polymdegradstab.2024.110696

Google Scholar

[14] M. Has, A. Erdem, L.A. Savas, U. Tayfun, M. Dogan, The influence of expandable graphite on the thermal, flame retardant and mechanical characteristics of short carbon fiber reinforced polyamide composites, J. Thermoplast. Compos. Mater. 36 (2023) 2777–2788.

DOI: 10.1177/08927057221096656

Google Scholar

[15] R.E. Lyon, P.N. Balaguru, A. Foden, U. Sorathia, J. Davidovits, M. Davidovics, Fire-resistant aluminosilicate composites, Fire Mater. 21 (1997) 67–73. https://doi.org/10.1002/(SICI)1099-1018(199703)21:2<67::AID-FAM596>3.0.CO;2-N.

DOI: 10.1002/(sici)1099-1018(199703)21:2<67::aid-fam596>3.3.co;2-e

Google Scholar

[16] M. Spontón, J.C. Ronda, M. Galià, V. Cádiz, Cone calorimetry studies of benzoxazine-epoxy systems flame retarded by chemically bonded phosphorus or silicon, Polym. Degrad. Stab. 94 (2009) 102–106.

DOI: 10.1016/j.polymdegradstab.2008.10.005

Google Scholar

[17] Z. Eslami, F. Yazdani, M.A. Mirzapour, Thermal and mechanical properties of phenolic-based composites reinforced by carbon fibres and multiwall carbon nanotubes, Compos. Part A Appl. Sci. Manuf. 72 (2015) 22–31.

DOI: 10.1016/j.compositesa.2015.01.015

Google Scholar

[18] P. Patel, T.R. Hull, R.E. Lyon, S.I. Stoliarov, R.N. Walters, S. Crowley, N. Safronava, Investigation of the thermal decomposition and flammability of PEEK and its carbon and glass-fibre composites, Polym. Degrad. Stab. 96 (2011) 12–22.

DOI: 10.1016/j.polymdegradstab.2010.11.009

Google Scholar

[19] Y. Carpier, B. Vieille, N. Delpouve, E. Dargent, Isothermal and anisothermal decomposition of carbon fibres polyphenylene sulfide composites for fire behavior analysis, Fire Saf. J. 109 (2019).

DOI: 10.1016/j.firesaf.2019.102868

Google Scholar