A Comparison Study on Structural Properties in La0.7Ca0.2Sr0.1MnO3 Compound Synthesized by Solid-State, Sol-Gel, and Wet-Mixing Methods

Article Preview

Abstract:

In this research, we have tried to investigate the effects of the synthesis methods on structural properties in La0.7Ca0.2Sr0.1MnO3 compound synthesized using solid-state, sol-gel, and wet-mixing methods. All samples were measured with several measurements such as X-ray diffraction (XRD), scanning electron microscope-energy dispersive X-ray (SEM-EDX), and Fourier transform infrared spectroscopy (FTIR). Our XRD analysis reveals a single phase without impurity and confirms the presence of orthorhombic structures with Pnma space group. Additionally, the average crystal size of La0.7Ca0.2Sr0.1MnO3 compound by using solid-state, sol-gel, and wet-mixing methods exhibits values of 112.51, 91.33, and 88,75 nm. For the morphological structure analysis, we have carried out SEM analysis which shows a decreasing value of grain size average of 1.70, 0.91, and 0.81 μm for solid-state, sol-gel, and wet-mixing methods samples, respectively, which have a similar trend with values of the average crystal size. The FTIR measurement confirms the presence of the internal bending mode of MnO6 and asymmetric stretching mode of MnO6 at a band around 518.16 - 524.24 and 548.68 - 616.57cm-1, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1152)

Pages:

45-54

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.R. Munazat, B. Kurniawan, D.S. Razaq, K. Watanabe, H. Tanaka, Physica B Condens Matter 592, 412227 (2020).

DOI: 10.1016/j.physb.2020.412227

Google Scholar

[2] J. Wang, J. Fan, F. Liu, L. Zu, H. Zheng, H. Liu, C. Ma, C. Wang, F. Qian, Y. Zhu, H. Yang, Chem Phys Lett, 807, 140119 (2022).

Google Scholar

[3] P.Z.Z. Nehan, O. Vitayaya, D.R. Munazat, M.T.E. Manawan, D. Darminto, B. Kurniawan, Physical Chemistry Chemical Physics, 26, 14476-14504 (2024).

DOI: 10.1039/d4cp01077a

Google Scholar

[4] Y. Li, L. Tian, J. Li, Y. Li, H. Zhang, Q. Chen, Ceram Int, 49, 23215–23226 (2023).

Google Scholar

[5] R.I. Admi, S.A. Saptari, A. Tjahjono, I.N. Rahman, W.A. Adi, J Phys Conf Ser, 1816, 012091 (2021).

Google Scholar

[6] E. Sellami-Jmal, A. Ezaami, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, J Supercond Nov Magn, 30, 489–496, (2017).

DOI: 10.1007/s10948-016-3794-6

Google Scholar

[7] A. Ezaami, N.O. Nasser, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, E.K. Hlil, Journal of Materials Science: Materials in Electronics 28, 3648–3658, (2017).

DOI: 10.1007/s10854-016-5969-0

Google Scholar

[8] A. Ezaami, I. Sfifir, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, J Alloys Compd, 693, 658–666, (2017).

DOI: 10.1016/j.jallcom.2016.09.223

Google Scholar

[9] C.A. Taboada-Moreno, F. Sánchez-De Jesús, F. Pedro-García, C.A. Cortés-Escobedo, J.A. Betancourt-Cantera, M. Ramírez-Cardona, A.M. Bolarín-Miró, J Magn Magn Mater, 496, 165887, (2020).

DOI: 10.1016/j.jmmm.2019.165887

Google Scholar

[10] D.R. Munazat, B. Kurniawan, D.S. Razaq, IOP Conf Ser Mater Sci Eng, 546, 042026, (2019).

Google Scholar

[11] B. Uthaman, A. Prasad, M. Hariram, IOP Conf Ser Mater Sci Eng 1263, 012036 (2022).

Google Scholar

[12] P. Veverka, O. Kaman, K. Knížek, P. Novák, M. Maryško, Z. Jirák, Journal of Physics Condensed Matter, 29, 035803, (2017).

DOI: 10.1088/1361-648x/29/3/035803

Google Scholar

[13] X. Yu, H. Li, K. Chu, X. Pu, X. Gu, S. Jin, X. Guan, X. Liu, Ceram Int, 47, 13469–13479, (2021).

Google Scholar

[14] G. Singh, A. Gaur, P. Bisht, R.N. Mahato, J Magn Magn Mater 591. 171731, (2024).

Google Scholar

[15] A. Sakka, R. M'nassri, M.M. Nofal, S. Mahjoub, W. Cheikhrouhou-Koubaa, N. Chniba-Boudjada, M. Oumezzine, A. Cheikhrouhou, J Magn Magn Mater 514, 167158, (2020).

DOI: 10.1016/j.jmmm.2020.167158

Google Scholar

[16] R.D. Shannon, C.T. Prewitt, Revised values of effective ionic radii., Acta Crystallogr B, 26, 1046–1048, (1970).

DOI: 10.1107/s0567740870003576

Google Scholar

[17] D.S. Razaq, B. Kurniawan, D.R. Munazat, K. Watanabe, H. Tanaka, Crystals, 10,  407, (2020).

Google Scholar

[18] C. Henchiri, R. Hamdi, T. Mnasri, M.A. Valente, P.R. Prezas, E. Dhahri, Appl Phys A Mater Sci Process, 125, 725, (2019).

DOI: 10.1007/s00339-019-2980-3

Google Scholar

[19] T.M. Al-Shahumi, I.A. Al-Omari, S.H. Al-Harthi, M.T.Z. Myint, P. Kharel, S. Lamichhane, S.H. Liou, J Alloys Compd, 958, 170454 (2023).

DOI: 10.1016/j.jallcom.2023.170454

Google Scholar

[20] T.M. Al-Shahumi, I.A. Al-Omari, S.H. Al-Harthi, M.T.Z. Myint, SN Appl Sci, 5, 12, (2023).

DOI: 10.1007/s42452-023-05328-5

Google Scholar

[21] I.O. Faniyi, O. Fasakin, B. Olofinjana, A.S. Adekunle, T. V. Oluwasusi, M.A. Eleruja, E.O.B. Ajayi, SN Appl Sci, 1, 1181, (2019).

DOI: 10.1007/s42452-019-1188-7

Google Scholar

[22] P.Z.Z. Nehan, A.A. Akbar, M.I.N. Karim, R.A. Fahriza, M. Zainuri, Jurnal Fisika Dan Aplikasinya, 19, 44, (2023).

DOI: 10.12962/j24604682.v19i2.15721

Google Scholar

[23] C. Fajar Kresna Murti, P. Zhemas Nul Nehan, A. Silfiyatus Sa, A. Rafi Setopratama, F. Munawaroh, Materials Science Forum, 1094, 65-70, (2023).

Google Scholar