Investigating the Narrowing Effect in Muon Spin Relaxation within Fluctuating Magnetic Fields: A Strong Collision Model Approach

Article Preview

Abstract:

We present our recent findings on the narrowing effect observed in muon spin relaxation within fluctuating magnetic fields, with a particular focus on muon diffusion in a background of random fields. Utilizing a strong collision model framework, we explore muon diffusion in a random Voigtian magnetic field and introduce a novel parameter to characterize the narrowing effect on the muon spin resonance (μSR) line shape. For the first time, we computationally demonstrate that the narrowing effect depends on the ratio of the Lorentzian half-width at half-maximum (HWHM) to the Gaussian HWHM. Our results indicate that increasing the Lorentzian HWHM reduces the rate of the narrowing effect, leading to a saturation regime characterized by an exponential relaxation function. When the Lorentzian contribution is sufficiently high, the motional narrowing effect disappears. This transition is marked by a sign change in our defined parameter from positive to negative values. Furthermore, we extend our study to La1.976Sr0.024CuO4 at 200 K, where our analysis reveals that muon diffusion occurs in the presence of a static Gaussian nuclear dipole field, while the static Lorentzian field remains absent. These findings underscore the importance of considering both muon diffusion and fluctuating fields in the interpretation of μSR spectra. Our study provides significant insights into muon behavior in complex magnetic environments, particularly in materials exhibiting spin glass states or mixed magnetic interactions, contributing to a broader understanding of magnetic field interactions at the microscopic level.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1152)

Pages:

55-63

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Wenner, R. Holmestad, K. Matsuda, K. Nishimura, T. Matsuzaki, D. Tomono, F.L. Pratt, C.D. Marioara, Probing defects in Al-Mg-Si alloys using muon spin relaxation, Phys. Rev. B 86 (2012) 104201.

DOI: 10.1103/physrevb.86.104201

Google Scholar

[2] A. Yaouanc, P. Dalmas de Réotier, Muon Spin Rotation, Relaxation, and Resonance: Applications to Condensed Matter, Oxford University Press, Oxford, 2011.

DOI: 10.7566/jpscp.21.011053

Google Scholar

[3] J. Kondo, Muon diffusion in metals, Hyperfine Interact. 31(1986) 117-133

DOI: 10.1007/bf02401549

Google Scholar

[4] G. Alexandrowicz, T. Tashma, M. Socolovsky, A. Amato, A. Grayevsky, F. N. Gygax, M. Pinkpank, A. Schenck, N. Kaplan, μ+ Hopping between magnetically labeled sites in PrIn3: "kinematic" Simulation and analytic treatment, Phys. Rev. Lett. 82 (1999) 1028-1031

DOI: 10.1103/physrevlett.82.1028

Google Scholar

[5] M. Rogers, T. Prokscha, G. Teobaldi, Lendro Liborio, S. Sturniolo, E. Poli, D. Jochym, R. Stewart, M. FLokstra, S. Lee, M. Ali, B.J. Hickey, T. Moorsom, O. Cespedes, Observation of a molecular muonium polaron and its application to probing magnetic and electronic states, Phys. Rev. B 104 (2021) 064429.

DOI: 10.1103/physrevb.104.064429

Google Scholar

[6] T.U. Ito, W. Higemoto, K. Shimomura, Understanding muon diffusion in perovskite oxides below room temperature based on harmonic transition state theory, Phys. Rev. B 108 (2023) 224301.

DOI: 10.1103/physrevb.108.224301

Google Scholar

[7] R. Kubo, A stochastic theory of spin relaxation, Hyperfine Interact. 8 (1981) 731–738.

DOI: 10.1007/bf01037553

Google Scholar

[8] R.S. Hayano, Y.J. Uemura, J. Imazato, N. Nishida, T. Yamazaki and R. Kubo, Zero- and low-field spin relaxation studied by positive muons, Phys, Rev. B, 20 (1979) 850-859

DOI: 10.1103/physrevb.20.850

Google Scholar

[9] Y.J. Uemura, T. Yamazaki, D.R. Harshman, M. Senba, and E.J. Ansaldo, Muon-spin relaxation in AuFe and CuMn spin glasses, Phys. Rev. B, 31 (1985) 546-563

DOI: 10.1103/physrevb.31.546

Google Scholar

[10] M. Leon, Models for μ+ depolarization in spin glasses for zero external field, Hyperfine Interact. 8 (1981) 781-784

Google Scholar

[11] A. T. Fiory, Muon-spin relaxation in systems of dilute dipolar impurities: numerical treatment of fluctuations, Hyperfine Interact. 8 (1981) 777-780

DOI: 10.1007/bf01037561

Google Scholar

[12] Y. J. Uemura, Probing spin glasses with zero-field μSR, Hyperfine Interact. 8 (1981) 739-748

DOI: 10.1007/bf01037554

Google Scholar

[13] M. I. Larkin, Y. Fudamoto, I. M. Gat, A. Kinkhabwala, K. M. Kojima, G. M. Luke, J. Merrin, B. Nachumi, Y. J. Uemura, M. Azuma, T. Saito, and M. Takano, Crossover from Dilute to Majority Spin Freezing in Two Leg Ladder System Sr(𝐶𝑢,𝑍𝑛)2𝑂3, Phys. Rev. Lett. 85, (2000) (1982)

DOI: 10.1103/physrevlett.85.1982

Google Scholar

[14] A. Maisuradze, W. Schnelle, R. Khasanov, R. Gumeniuk, M. Nicklas, H. Rosner, A. Leithe-Jasper, Yu. Grin, A. Amato, P. Thalmeier, Evidence for time-reversal symmetry breaking in superconducting PrPt4Ge12, Phys. Rev. B, 82 (2010) 024524

DOI: 10.1103/physrevb.82.024524

Google Scholar

[15] M.D. Umar, H.L. Hariyanto, M.A.U. Absor, Anisotropic internal fields behavior in La2−xSrxCuO4 (x = 0.024): Precursor to the spin glass state revealed by muon spin relaxation, Physica B 683 (2024) 415904, 1-7.

Google Scholar

[16] J. E. Sonier, J. H. Brewer, R. F. Kiefl, R. H. Heffner, K. F. Poon, S. L. Stubbs, G. D. Morris, R. I. Miller, W. N. Hardy, R. Liang, D. A. Bonn, J. S. Gardner, C. E. Stronach, N. J. Curro, Correlations between charge ordering and local magnetic fields in overdoped YBa2Cu3O6+𝑥, Phys. Rev. B 66, (2002) 134501

DOI: 10.1016/s0921-4526(02)01642-3

Google Scholar

[17] K.W. Kehr, G. Honig, D. Richter, Stochastic theory of spin depolarization of muon diffusing in the presence of traps, Z. Physik B, 32 (1978) 49-58.

DOI: 10.1007/bf01322186

Google Scholar

[18] M.D. Umar, K. Ishida, R. Murayama, D.P. Sari, U. Widyaiswari, M. Fronzi, H. Rozak, W. N. Zaharim, I. Watanabe, M. Iwasaki, Muon spin motion at the crossover regime between Gaussian and Lorentzian distribution of magnetic fields, Prog. Theor. Exp. Phys., 2021 (2021) 083I01.

DOI: 10.1093/ptep/ptab074

Google Scholar

[19] G. Allodi and R. De Renzi, A numerical methods to calculate the muon relaxation function in the presence of diffusion, Phys. Scr. 89 (2014) 115201

DOI: 10.1088/0031-8949/89/11/115201

Google Scholar

[20] I. Watanabe, T. Adachi, S. Yairi, Y. Koike, K. Nagamine, Change of the dynamics of internal fields in the normal state of La2-xSrxCuO4 observed by muon-spin-relaxation, J. Phys. Soc. Jpn. 77 (2008) 124716

DOI: 10.1143/jpsj.77.124716

Google Scholar