[1]
S. Wenner, R. Holmestad, K. Matsuda, K. Nishimura, T. Matsuzaki, D. Tomono, F.L. Pratt, C.D. Marioara, Probing defects in Al-Mg-Si alloys using muon spin relaxation, Phys. Rev. B 86 (2012) 104201.
DOI: 10.1103/physrevb.86.104201
Google Scholar
[2]
A. Yaouanc, P. Dalmas de Réotier, Muon Spin Rotation, Relaxation, and Resonance: Applications to Condensed Matter, Oxford University Press, Oxford, 2011.
DOI: 10.7566/jpscp.21.011053
Google Scholar
[3]
J. Kondo, Muon diffusion in metals, Hyperfine Interact. 31(1986) 117-133
DOI: 10.1007/bf02401549
Google Scholar
[4]
G. Alexandrowicz, T. Tashma, M. Socolovsky, A. Amato, A. Grayevsky, F. N. Gygax, M. Pinkpank, A. Schenck, N. Kaplan, μ+ Hopping between magnetically labeled sites in PrIn3: "kinematic" Simulation and analytic treatment, Phys. Rev. Lett. 82 (1999) 1028-1031
DOI: 10.1103/physrevlett.82.1028
Google Scholar
[5]
M. Rogers, T. Prokscha, G. Teobaldi, Lendro Liborio, S. Sturniolo, E. Poli, D. Jochym, R. Stewart, M. FLokstra, S. Lee, M. Ali, B.J. Hickey, T. Moorsom, O. Cespedes, Observation of a molecular muonium polaron and its application to probing magnetic and electronic states, Phys. Rev. B 104 (2021) 064429.
DOI: 10.1103/physrevb.104.064429
Google Scholar
[6]
T.U. Ito, W. Higemoto, K. Shimomura, Understanding muon diffusion in perovskite oxides below room temperature based on harmonic transition state theory, Phys. Rev. B 108 (2023) 224301.
DOI: 10.1103/physrevb.108.224301
Google Scholar
[7]
R. Kubo, A stochastic theory of spin relaxation, Hyperfine Interact. 8 (1981) 731–738.
DOI: 10.1007/bf01037553
Google Scholar
[8]
R.S. Hayano, Y.J. Uemura, J. Imazato, N. Nishida, T. Yamazaki and R. Kubo, Zero- and low-field spin relaxation studied by positive muons, Phys, Rev. B, 20 (1979) 850-859
DOI: 10.1103/physrevb.20.850
Google Scholar
[9]
Y.J. Uemura, T. Yamazaki, D.R. Harshman, M. Senba, and E.J. Ansaldo, Muon-spin relaxation in AuFe and CuMn spin glasses, Phys. Rev. B, 31 (1985) 546-563
DOI: 10.1103/physrevb.31.546
Google Scholar
[10]
M. Leon, Models for μ+ depolarization in spin glasses for zero external field, Hyperfine Interact. 8 (1981) 781-784
Google Scholar
[11]
A. T. Fiory, Muon-spin relaxation in systems of dilute dipolar impurities: numerical treatment of fluctuations, Hyperfine Interact. 8 (1981) 777-780
DOI: 10.1007/bf01037561
Google Scholar
[12]
Y. J. Uemura, Probing spin glasses with zero-field μSR, Hyperfine Interact. 8 (1981) 739-748
DOI: 10.1007/bf01037554
Google Scholar
[13]
M. I. Larkin, Y. Fudamoto, I. M. Gat, A. Kinkhabwala, K. M. Kojima, G. M. Luke, J. Merrin, B. Nachumi, Y. J. Uemura, M. Azuma, T. Saito, and M. Takano, Crossover from Dilute to Majority Spin Freezing in Two Leg Ladder System Sr(𝐶𝑢,𝑍𝑛)2𝑂3, Phys. Rev. Lett. 85, (2000) (1982)
DOI: 10.1103/physrevlett.85.1982
Google Scholar
[14]
A. Maisuradze, W. Schnelle, R. Khasanov, R. Gumeniuk, M. Nicklas, H. Rosner, A. Leithe-Jasper, Yu. Grin, A. Amato, P. Thalmeier, Evidence for time-reversal symmetry breaking in superconducting PrPt4Ge12, Phys. Rev. B, 82 (2010) 024524
DOI: 10.1103/physrevb.82.024524
Google Scholar
[15]
M.D. Umar, H.L. Hariyanto, M.A.U. Absor, Anisotropic internal fields behavior in La2−xSrxCuO4 (x = 0.024): Precursor to the spin glass state revealed by muon spin relaxation, Physica B 683 (2024) 415904, 1-7.
Google Scholar
[16]
J. E. Sonier, J. H. Brewer, R. F. Kiefl, R. H. Heffner, K. F. Poon, S. L. Stubbs, G. D. Morris, R. I. Miller, W. N. Hardy, R. Liang, D. A. Bonn, J. S. Gardner, C. E. Stronach, N. J. Curro, Correlations between charge ordering and local magnetic fields in overdoped YBa2Cu3O6+𝑥, Phys. Rev. B 66, (2002) 134501
DOI: 10.1016/s0921-4526(02)01642-3
Google Scholar
[17]
K.W. Kehr, G. Honig, D. Richter, Stochastic theory of spin depolarization of muon diffusing in the presence of traps, Z. Physik B, 32 (1978) 49-58.
DOI: 10.1007/bf01322186
Google Scholar
[18]
M.D. Umar, K. Ishida, R. Murayama, D.P. Sari, U. Widyaiswari, M. Fronzi, H. Rozak, W. N. Zaharim, I. Watanabe, M. Iwasaki, Muon spin motion at the crossover regime between Gaussian and Lorentzian distribution of magnetic fields, Prog. Theor. Exp. Phys., 2021 (2021) 083I01.
DOI: 10.1093/ptep/ptab074
Google Scholar
[19]
G. Allodi and R. De Renzi, A numerical methods to calculate the muon relaxation function in the presence of diffusion, Phys. Scr. 89 (2014) 115201
DOI: 10.1088/0031-8949/89/11/115201
Google Scholar
[20]
I. Watanabe, T. Adachi, S. Yairi, Y. Koike, K. Nagamine, Change of the dynamics of internal fields in the normal state of La2-xSrxCuO4 observed by muon-spin-relaxation, J. Phys. Soc. Jpn. 77 (2008) 124716
DOI: 10.1143/jpsj.77.124716
Google Scholar