[1]
R.K. Kotnala, J. Shah, Ferrite Materials: Nano toSpintronics Regime, in: Handb. Magn. Mater., 2015.
DOI: 10.1016/B978-0-444-63528-0.00004-8
Google Scholar
[2]
S. Gautam, R. Charak, S. Garg, N. Goyal, S. Chakraverty, K.H. Chae, Y. Kim, Probing temperature-dependent magnetism in cobalt and zinc ferrites: A study through bulk and atomic-level magnetic measurements for spintronics, J. Magn. Magn. Mater. 593 (2024).
DOI: 10.1016/j.jmmm.2024.171867
Google Scholar
[3]
S. Moslemi, E. Mohebbi, S. Hasani, The effect of apple pectin agent on the structural, magnetic, and optical properties of cobalt ferrite nanoparticles synthesized by the auto-combustion sol-gel method, Mater. Chem. Phys. 315 (2024).
DOI: 10.1016/j.matchemphys.2024.129015
Google Scholar
[4]
R. Zhang, L. Sun, Z. Wang, W. Hao, E. Cao, Y. Zhang, Dielectric and magnetic properties of CoFe2O4 prepared by sol-gel auto-combustion method, Mater. Res. Bull. 98 (2018).
DOI: 10.1016/j.materresbull.2017.08.006
Google Scholar
[5]
M. Malarvizhi, S. Meyvel, M. Sandhiya, M. Sathish, M. Dakshana, P. Sathya, D. Thillaikkarasi, S. Karthikeyan, Design and fabrication of cobalt and nickel ferrites based flexible electrodes for high-performance energy storage applications, Inorg. Chem. Commun. 123 (2021).
DOI: 10.1016/j.inoche.2020.108344
Google Scholar
[6]
T. Khatoon, N. Alam, V.S. Chandel, A. Azam, S. Srivastava, J. Gupta, Exploring the synergistic effects of La3+ substitution on dielectric performance of manganese cobalt ferrite: Implications for advanced electronic applications, Ceram. Int. 50 (2024).
DOI: 10.1016/j.ceramint.2023.12.083
Google Scholar
[7]
P.A. Vinosha, A. Manikandan, A.C. Preetha, A. Dinesh, Y. Slimani, M.A. Almessiere, A. Baykal, B. Xavier, G.F. Nirmala, Review on Recent Advances of Synthesis, Magnetic Properties, and Water Treatment Applications of Cobalt Ferrite Nanoparticles and Nanocomposites, J. Supercond. Nov. Magn. 34 (2021).
DOI: 10.1007/s10948-021-05854-6
Google Scholar
[8]
F. Ameen, N. Majrashi, Recent trends in the use of cobalt ferrite nanoparticles as an antimicrobial agent for disability infections: A review, Inorg. Chem. Commun. 156 (2023).
DOI: 10.1016/j.inoche.2023.111187
Google Scholar
[9]
Suharyana, R.R. Febriani, N.P. Prasetya, Utari, N.A. Wibowo, Suharno, A. Supriyanto, A.H. Ramelan, B. Purnama, Sodium-hydroxide molarities influence the structural and magnetic properties of strontium-substituted cobalt ferrite nanoparticles produced via co-precipitation, Kuwait J. Sci. 50 (2023).
DOI: 10.1016/j.kjs.2023.05.002
Google Scholar
[10]
B. Purnama, R. Arilasita, N. Rikamukti, Utari, S. Budiawanti, Suharno, A.T. Wijayanta, Suharyana, D. Djuhana, E. Suharyadi, T. Tanaka, K. Matsuyama, Annealing temperature dependence of crystalline structure and magnetic properties in nano-powder strontium-substituted cobalt ferrite, Nano-Structures and Nano-Objects. 30 (2022).
DOI: 10.1016/j.nanoso.2022.100862
Google Scholar
[11]
N. Rikamukti, Utari, B. Purnama, Effect of doping Strontium ions in co-precipitated cobalt ferrite, in: J. Phys. Conf. Ser., 2017.
DOI: 10.1088/1742-6596/909/1/012012
Google Scholar
[12]
B. Jeevanantham, M.K. Shobana, T. Pazhanivel, H. Choe, Pseudocapacitive behaviors of strontium-doped cobalt ferrite nanoparticles for supercapacitor applications, J. Alloys Compd. 960 (2023).
DOI: 10.1016/j.jallcom.2023.170651
Google Scholar
[13]
G. Nandhini, S. Kavita, T. Pazhanivel, M.K. Shobana, Photocatalytic degradation of methylene blue on strontium-doped cobalt ferrite, J. Mater. Sci. Mater. Electron. 34 (2023).
DOI: 10.1007/s10854-023-10866-0
Google Scholar
[14]
A. Mir, M. Qadeer, R. Waqas, S.N. Khan, Study of Morphological, Optical and Microwave Properties of Strontium-Doped Cobalt Ferrites, J. Electron. Mater. 49 (2020).
DOI: 10.1007/s11664-020-08212-9
Google Scholar
[15]
D.R. Lide, CRC Handbook of Chemistry and Physics, Internet Version 2005, CRC Press. Taylor Fr. Boca Rat. FL. (2005).
Google Scholar
[16]
İ.H. Karakas, The effects of fuel type onto the structural, morphological, magnetic and photocatalytic properties of nanoparticles in the synthesis of cobalt ferrite nanoparticles with microwave assisted combustion method, Ceram. Int. 47 (2021) 5597–5609.
DOI: 10.1016/j.ceramint.2020.10.144
Google Scholar
[17]
A. Modabberasl, E. Jaberolansar, P. Kameli, H. Nikmanesh, Hydrothermal as a synthesis method for characterization of structural, morphological and magnetic properties of Co–Al ferrite nanoparticles, Mater. Chem. Phys. 314 (2024).
DOI: 10.1016/j.matchemphys.2023.128832
Google Scholar
[18]
N.P. Prasetya, R.I. Setiyani, Utari, K. Kusumandari, Y. Iriani, J. Safani, A. Taufiq, N.A. Wibowo, S. Suharno, B. Purnama, Cation trivalent tune of crystalline structure and magnetic properties in coprecipitated cobalt ferrite nanoparticles, Mater. Res. Express. 10 (2023).
DOI: 10.1088/2053-1591/acc011
Google Scholar
[19]
R. Jain, S. Kumar, S.K. Meena, Precipitating agent (NaOH and NH4OH) dependent magnetic properties of cobalt ferrite nanoparticles, AIP Adv. 12 (2022).
DOI: 10.1063/5.0098157
Google Scholar
[20]
E. Hutamaningtyas, Utari, Suharyana, B. Purnama, A.T. Wijayanta, Effects of the synthesis temperature on the crystalline structure and the magnetic properties of cobalt ferrite nanoparticles prepared via coprecipitation, J. Korean Phys. Soc. 69 (2016).
DOI: 10.3938/jkps.69.584
Google Scholar
[21]
N.P. Prasetya, R. Arilasita, H. Aldila, N.A. Wibowo, Riyatun, Utari, Nuryani, T. Tanaka, B. Purnama, Single-domain configuration tune high coercive field in Co-precipitated monazite-decorated cobalt ferrite nanoparticles, Nano-Structures and Nano-Objects. 39 (2024).
DOI: 10.1016/j.nanoso.2024.101301
Google Scholar
[22]
N.P. Prasetya, Utari, Y. Iriani, B. Purnama, The Effect of Annealing Temperature on the Structural and Magnetic Properties of Lanthanum Doped Cobalt Ferrite with the Bengawan Solo River Fine Sediment as the Source of Fe3+, in: Key Eng. Mater., 2023.
DOI: 10.4028/p-hr571t
Google Scholar
[23]
C.W. Tsai, E.H.G. Langner, The effect of synthesis temperature on the particle size of nano-ZIF-8, Microporous Mesoporous Mater. 221 (2016).
DOI: 10.1016/j.micromeso.2015.08.041
Google Scholar
[24]
N.P. Prasetya, Utari, Y. Iriani, B. Purnama, Physical Properties Modification of Co-precipitated CoLa0.1Fe1.9O4 Nanoparticle with Different Fe3+ Raw Material, in: Key Eng. Mater., 2023.
DOI: 10.4028/p-k1yes4
Google Scholar
[25]
E.H. El-Ghazzawy, Effect of heat treatment on structural, magnetic, elastic and optical properties of the co-precipitated Co0.4Sr0.6Fe2O4, J. Magn. Magn. Mater. 497 (2020).
DOI: 10.1016/j.jmmm.2019.166017
Google Scholar
[26]
R. Safi, A. Ghasemi, R. Shoja-Razavi, M. Tavousi, The role of pH on the particle size and magnetic consequence of cobalt ferrite, J. Magn. Magn. Mater. 396 (2015).
DOI: 10.1016/j.jmmm.2015.08.022
Google Scholar
[27]
R.D. Waldron, Infrared spectra of ferrites, Phys. Rev. 99 (1955).
DOI: 10.1103/PhysRev.99.1727
Google Scholar
[28]
K. Rana, P. Thakur, P. Sharma, M. Tomar, V. Gupta, A. Thakur, Improved structural and magnetic properties of cobalt nanoferrites: Influence of sintering temperature, Ceram. Int. 41 (2015).
DOI: 10.1016/j.ceramint.2014.11.143
Google Scholar
[29]
I.C. Nlebedim, Y. Melikhov, D.C. Jiles, Temperature dependence of magnetic properties of heat treated cobalt ferrite, J. Appl. Phys. 115 (2014).
DOI: 10.1063/1.4862300
Google Scholar
[30]
R. Kumar, M. Kar, Lattice strain induced magnetism in substituted nanocrystalline cobalt ferrite, J. Magn. Magn. Mater. 416 (2016).
DOI: 10.1016/j.jmmm.2016.05.035
Google Scholar