Synthesis Temperature Affects the Crystalline and Magnetic Properties of Strontium-Modified Cobalt Ferrite Nanoparticles

Article Preview

Abstract:

Effect of the synthesis temperature on strontium-modified cobalt ferrite nanoparticles using co-precipitation method has been conducted. Molarity composition of strontium is 10%, chosen to substitute in the cobalt ferrite nanoparticles. Synthesis temperature treatment (75 °C, 85 °C, and 95 °C) is tuned the crystalline structures and magnetic properties of the cobalt ferrite nanoparticles. XRD result showed that the pattern of characteristics appropriates ICDD 22-1086, which describes that all peaks are pristine cobalt ferrite. Furthermore, crystallite size decreases with increasing synthesis temperature, i.e., 25.32 nm, 23.55 nm, and 22.65 nm at the temperatures of 75 °C, 85 °C, and 95 °C, respectively. FTIR obtained shows an absorption band at around 590 cm-1 (tetrahedral site) and 387 cm-1 (octahedral site), which is absorption from the original cobalt ferrite. VSM test also revealed changing magnetic properties with synthesis temperature treatment. In addition, squareness ratio showed that the magnitudes were greater than 0.5, which indicates single-domain magnetic. Hence, the adjustment of the synthesis temperature at 95 °C has the highest potential to advance applications such as photocatalytic and/or antibacterial due to its smallest crystallite size.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1152)

Pages:

91-100

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.K. Kotnala, J. Shah, Ferrite Materials: Nano toSpintronics Regime, in: Handb. Magn. Mater., 2015.

DOI: 10.1016/B978-0-444-63528-0.00004-8

Google Scholar

[2] S. Gautam, R. Charak, S. Garg, N. Goyal, S. Chakraverty, K.H. Chae, Y. Kim, Probing temperature-dependent magnetism in cobalt and zinc ferrites: A study through bulk and atomic-level magnetic measurements for spintronics, J. Magn. Magn. Mater. 593 (2024).

DOI: 10.1016/j.jmmm.2024.171867

Google Scholar

[3] S. Moslemi, E. Mohebbi, S. Hasani, The effect of apple pectin agent on the structural, magnetic, and optical properties of cobalt ferrite nanoparticles synthesized by the auto-combustion sol-gel method, Mater. Chem. Phys. 315 (2024).

DOI: 10.1016/j.matchemphys.2024.129015

Google Scholar

[4] R. Zhang, L. Sun, Z. Wang, W. Hao, E. Cao, Y. Zhang, Dielectric and magnetic properties of CoFe2O4 prepared by sol-gel auto-combustion method, Mater. Res. Bull. 98 (2018).

DOI: 10.1016/j.materresbull.2017.08.006

Google Scholar

[5] M. Malarvizhi, S. Meyvel, M. Sandhiya, M. Sathish, M. Dakshana, P. Sathya, D. Thillaikkarasi, S. Karthikeyan, Design and fabrication of cobalt and nickel ferrites based flexible electrodes for high-performance energy storage applications, Inorg. Chem. Commun. 123 (2021).

DOI: 10.1016/j.inoche.2020.108344

Google Scholar

[6] T. Khatoon, N. Alam, V.S. Chandel, A. Azam, S. Srivastava, J. Gupta, Exploring the synergistic effects of La3+ substitution on dielectric performance of manganese cobalt ferrite: Implications for advanced electronic applications, Ceram. Int. 50 (2024).

DOI: 10.1016/j.ceramint.2023.12.083

Google Scholar

[7] P.A. Vinosha, A. Manikandan, A.C. Preetha, A. Dinesh, Y. Slimani, M.A. Almessiere, A. Baykal, B. Xavier, G.F. Nirmala, Review on Recent Advances of Synthesis, Magnetic Properties, and Water Treatment Applications of Cobalt Ferrite Nanoparticles and Nanocomposites, J. Supercond. Nov. Magn. 34 (2021).

DOI: 10.1007/s10948-021-05854-6

Google Scholar

[8] F. Ameen, N. Majrashi, Recent trends in the use of cobalt ferrite nanoparticles as an antimicrobial agent for disability infections: A review, Inorg. Chem. Commun. 156 (2023).

DOI: 10.1016/j.inoche.2023.111187

Google Scholar

[9] Suharyana, R.R. Febriani, N.P. Prasetya, Utari, N.A. Wibowo, Suharno, A. Supriyanto, A.H. Ramelan, B. Purnama, Sodium-hydroxide molarities influence the structural and magnetic properties of strontium-substituted cobalt ferrite nanoparticles produced via co-precipitation, Kuwait J. Sci. 50 (2023).

DOI: 10.1016/j.kjs.2023.05.002

Google Scholar

[10] B. Purnama, R. Arilasita, N. Rikamukti, Utari, S. Budiawanti, Suharno, A.T. Wijayanta, Suharyana, D. Djuhana, E. Suharyadi, T. Tanaka, K. Matsuyama, Annealing temperature dependence of crystalline structure and magnetic properties in nano-powder strontium-substituted cobalt ferrite, Nano-Structures and Nano-Objects. 30 (2022).

DOI: 10.1016/j.nanoso.2022.100862

Google Scholar

[11] N. Rikamukti, Utari, B. Purnama, Effect of doping Strontium ions in co-precipitated cobalt ferrite, in: J. Phys. Conf. Ser., 2017.

DOI: 10.1088/1742-6596/909/1/012012

Google Scholar

[12] B. Jeevanantham, M.K. Shobana, T. Pazhanivel, H. Choe, Pseudocapacitive behaviors of strontium-doped cobalt ferrite nanoparticles for supercapacitor applications, J. Alloys Compd. 960 (2023).

DOI: 10.1016/j.jallcom.2023.170651

Google Scholar

[13] G. Nandhini, S. Kavita, T. Pazhanivel, M.K. Shobana, Photocatalytic degradation of methylene blue on strontium-doped cobalt ferrite, J. Mater. Sci. Mater. Electron. 34 (2023).

DOI: 10.1007/s10854-023-10866-0

Google Scholar

[14] A. Mir, M. Qadeer, R. Waqas, S.N. Khan, Study of Morphological, Optical and Microwave Properties of Strontium-Doped Cobalt Ferrites, J. Electron. Mater. 49 (2020).

DOI: 10.1007/s11664-020-08212-9

Google Scholar

[15] D.R. Lide, CRC Handbook of Chemistry and Physics, Internet Version 2005, CRC Press. Taylor Fr. Boca Rat. FL. (2005).

Google Scholar

[16] İ.H. Karakas, The effects of fuel type onto the structural, morphological, magnetic and photocatalytic properties of nanoparticles in the synthesis of cobalt ferrite nanoparticles with microwave assisted combustion method, Ceram. Int. 47 (2021) 5597–5609.

DOI: 10.1016/j.ceramint.2020.10.144

Google Scholar

[17] A. Modabberasl, E. Jaberolansar, P. Kameli, H. Nikmanesh, Hydrothermal as a synthesis method for characterization of structural, morphological and magnetic properties of Co–Al ferrite nanoparticles, Mater. Chem. Phys. 314 (2024).

DOI: 10.1016/j.matchemphys.2023.128832

Google Scholar

[18] N.P. Prasetya, R.I. Setiyani, Utari, K. Kusumandari, Y. Iriani, J. Safani, A. Taufiq, N.A. Wibowo, S. Suharno, B. Purnama, Cation trivalent tune of crystalline structure and magnetic properties in coprecipitated cobalt ferrite nanoparticles, Mater. Res. Express. 10 (2023).

DOI: 10.1088/2053-1591/acc011

Google Scholar

[19] R. Jain, S. Kumar, S.K. Meena, Precipitating agent (NaOH and NH4OH) dependent magnetic properties of cobalt ferrite nanoparticles, AIP Adv. 12 (2022).

DOI: 10.1063/5.0098157

Google Scholar

[20] E. Hutamaningtyas, Utari, Suharyana, B. Purnama, A.T. Wijayanta, Effects of the synthesis temperature on the crystalline structure and the magnetic properties of cobalt ferrite nanoparticles prepared via coprecipitation, J. Korean Phys. Soc. 69 (2016).

DOI: 10.3938/jkps.69.584

Google Scholar

[21] N.P. Prasetya, R. Arilasita, H. Aldila, N.A. Wibowo, Riyatun, Utari, Nuryani, T. Tanaka, B. Purnama, Single-domain configuration tune high coercive field in Co-precipitated monazite-decorated cobalt ferrite nanoparticles, Nano-Structures and Nano-Objects. 39 (2024).

DOI: 10.1016/j.nanoso.2024.101301

Google Scholar

[22] N.P. Prasetya, Utari, Y. Iriani, B. Purnama, The Effect of Annealing Temperature on the Structural and Magnetic Properties of Lanthanum Doped Cobalt Ferrite with the Bengawan Solo River Fine Sediment as the Source of Fe3+, in: Key Eng. Mater., 2023.

DOI: 10.4028/p-hr571t

Google Scholar

[23] C.W. Tsai, E.H.G. Langner, The effect of synthesis temperature on the particle size of nano-ZIF-8, Microporous Mesoporous Mater. 221 (2016).

DOI: 10.1016/j.micromeso.2015.08.041

Google Scholar

[24] N.P. Prasetya, Utari, Y. Iriani, B. Purnama, Physical Properties Modification of Co-precipitated CoLa0.1Fe1.9O4 Nanoparticle with Different Fe3+ Raw Material, in: Key Eng. Mater., 2023.

DOI: 10.4028/p-k1yes4

Google Scholar

[25] E.H. El-Ghazzawy, Effect of heat treatment on structural, magnetic, elastic and optical properties of the co-precipitated Co0.4Sr0.6Fe2O4, J. Magn. Magn. Mater. 497 (2020).

DOI: 10.1016/j.jmmm.2019.166017

Google Scholar

[26] R. Safi, A. Ghasemi, R. Shoja-Razavi, M. Tavousi, The role of pH on the particle size and magnetic consequence of cobalt ferrite, J. Magn. Magn. Mater. 396 (2015).

DOI: 10.1016/j.jmmm.2015.08.022

Google Scholar

[27] R.D. Waldron, Infrared spectra of ferrites, Phys. Rev. 99 (1955).

DOI: 10.1103/PhysRev.99.1727

Google Scholar

[28] K. Rana, P. Thakur, P. Sharma, M. Tomar, V. Gupta, A. Thakur, Improved structural and magnetic properties of cobalt nanoferrites: Influence of sintering temperature, Ceram. Int. 41 (2015).

DOI: 10.1016/j.ceramint.2014.11.143

Google Scholar

[29] I.C. Nlebedim, Y. Melikhov, D.C. Jiles, Temperature dependence of magnetic properties of heat treated cobalt ferrite, J. Appl. Phys. 115 (2014).

DOI: 10.1063/1.4862300

Google Scholar

[30] R. Kumar, M. Kar, Lattice strain induced magnetism in substituted nanocrystalline cobalt ferrite, J. Magn. Magn. Mater. 416 (2016).

DOI: 10.1016/j.jmmm.2016.05.035

Google Scholar