Improved Electrochemical Performance of Bifunctional Electrocatalysts Based on Prussian Blue Analogues for Zn-Air Batteries

Article Preview

Abstract:

Prussian Blue Analogues (PBAs) have emerged as promising materials for energy storage and conversion applications. In this study, we synthesized PBA derivatives doped with Mn, Co, Ni, Zn, and Cu, supported on nitrogen-doped carbon aerogels (NCA), and evaluated their potential as bifunctional electrocatalysts for rechargeable zinc-air batteries. Structural and morphological analyses revealed the homogeneous dispersion of metal species in the NCA framework, ensuring effective active site exposure. Electrochemical characterizations demonstrated that MnCoNiZnCuPBA@NCA exhibited superior oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) performance, as evidenced by its high current density, low overpotential, and excellent Tafel slope. Furthermore, MnCoNiZnCuPBA@NCA achieved the highest discharge capacity (601.80 mAh.g-1) and energy density (322.67 mWh.g-1) among the materials studied, along with remarkable cycling stability. These findings underscore the potential of MnCoNiZnCuPBA@NCA as an efficient and durable bifunctional electrocatalyst for next-generation zinc-air batteries.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1152)

Pages:

103-108

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Wang, C. An, C. Qin, H. Gomaa, Q. Deng, S. Wu, and N. Hu. Nanomater, 12(14) (2022), p.2480.

Google Scholar

[2] W. Jiang, T. Wang, H. Chen, X. Suo, J. Liang, W. Zhu, H. Li, and S. Dai. Nano Energy, 79 (2021), p.105464.

Google Scholar

[3] M. Du, P. Geng, C. Pei, X. Jiang, Y. Shan, W. Hu, L. Ni, and H. Pang. Angew. Chem., Int. Ed., 61(41) (2022), p. e202209350.

Google Scholar

[4] S. Susanto, T. Nurtono, W. Widiyastuti, M. H. Yeh, and H. Setyawan. ACS omega. 9,12 (2024), pp.13994-14004.

DOI: 10.1021/acsomega.3c09297

Google Scholar

[5] S. Aulia, Y. C. Lin, L. Y. Chang, Y. X. Wang, M. H. Lin, K. C. Ho, and M. H. Yeh. ACS Appl. Energy Mater., 5(8) (2022), pp.9801-9810.

Google Scholar

[6] A. Iqbal, O. M. El-Kadri, and N. M. Hamdan. J. Energy Storage, 62 (2023), p.106926.

Google Scholar

[7] X. Lin, G. Chen, Y. Zhu, and H. Huang. Energ. Rev., (2024), p.100076.

Google Scholar

[8] H. W. Kim, V. J. Bukas, H. Park, S. Park, K. M. Diederichsen, J. Lim, Y. H. Cho, J. Kim, W. Kim, T. H. Han, J. Voss, A. C. Luntz and B. D. McCloskey. ACS Catal., 10(1) (2019), pp.852-863.

DOI: 10.1021/acscatal.9b04106

Google Scholar