Preparation of Magnetic Film Using Kappa Carrageenan Biopolymer Matrix and Its Characterization

Article Preview

Abstract:

We report the preparation of the free-standing magnetic film using solution casting method with κ-carrageenan as the matrix and magnetite nanoparticles (Fe3O4NP) as the magnetic material. The obtained film has a black-brown color and good responsiveness when exposed to permanent magnet. Fe3O4NP are evenly distributed over the κ-carrageenan matrix and tend to form agglomerations when the number of nanoparticles is increased. The presence of Fe3O4NP capped by trisodium citrate was demonstrated by the FTIR results of Fe-O, symmetric carboxylate (-COO-), and antisymmetric carboxylate stretching vibrations, respectively at wavenumbers of 418.6 cm-1, 1458.2 cm-1, and 1654.9 cm-1. Functional groups in κ-carrageenan also appeared indicating that Fe3O4NP attached to-carrageenan matrix. The M-H curve of the magnetic film shows the increase in Fe3O4NP content would increase the magnetization value. The small coercivity field of the magnetic film value shows that the magnetic film is a soft ferromagnetic material.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1152)

Pages:

83-90

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.A. Frey, S. Peng, K. Cheng, and S. Sun, "Magnetic nanoparticles: Synthesis, functionalization, and applications in bioimaging and magnetic energy storage," Chem. Soc. Rev. 38(9), 2532–2542 (2009).

DOI: 10.1039/b815548h

Google Scholar

[2] M. Mahmoudi, S. Sant, B. Wang, S. Laurent, and T. Sen, "Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy," Adv. Drug Deliv. Rev. 63(1–2), 24–46 (2011).

DOI: 10.1016/j.addr.2010.05.006

Google Scholar

[3] S.C.N. Tang, and I.M.C. Lo, "Magnetic nanoparticles: Essential factors for sustainable environmental applications," Water Res. 47(8), 2613–2632 (2013).

DOI: 10.1016/j.watres.2013.02.039

Google Scholar

[4] A.H. Lu, E.L. Salabas, and F. Schüth, "Magnetic nanoparticles: Synthesis, protection, functionalization, and application," Angew. Chemie - Int. Ed. 46(8), 1222–1244 (2007).

DOI: 10.1002/anie.200602866

Google Scholar

[5] Y. Wang, Y. Zhu, Y. Xue, J. Wang, X. Li, X. Wu, Y.X. Qin, and W. Chen, "Sequential in-situ route to synthesize novel composite hydrogels with excellent mechanical, conductive, and magnetic responsive properties," Mater. Des. 193, 108759 (2020).

DOI: 10.1016/j.matdes.2020.108759

Google Scholar

[6] K. Liu, L. Han, P. Tang, K. Yang, D. Gan, X. Wang, K. Wang, F. Ren, L. Fang, Y. Xu, Z. Lu, and X. Lu, "An Anisotropic Hydrogel Based on Mussel-Inspired Conductive Ferrofluid Composed of Electromagnetic Nanohybrids," Nano Lett. 19(12), 8343–8356 (2019).

DOI: 10.1021/acs.nanolett.9b00363

Google Scholar

[7] J. Tang, Z. Tong, Y. Xia, M. Liu, Z. Lv, Y. Gao, T. Lu, S. Xie, Y. Pei, D. Fang, and T.J. Wang, "Super tough magnetic hydrogels for remotely triggered shape morphing," J. Mater. Chem. B 6(18), 2713–2722 (2018).

DOI: 10.1039/c8tb00568k

Google Scholar

[8] P. Martins, M. Silva, S. Reis, N. Pereira, H. Amorín, and S. Lanceros-Mendez, "Wide-Range Magnetoelectric Response on Hybrid Polymer Composites Based on Filler Type and Content," Polymers (Basel). 9(2), (2017).

DOI: 10.3390/polym9020062

Google Scholar

[9] A.L. Daniel-da-Silva, T. Trindade, B.J. Goodfellow, B.F.O. Costa, R.N. Correia, and A.M. Gil, "In situ synthesis of magnetite nanoparticles in carrageenan gels," Biomacromolecules 8(8), 2350–2357 (2007).

DOI: 10.1021/bm070096q

Google Scholar

[10] 1S. Shojaee-Aliabadi, H. Hosseini, M.A. Mohammadifar, A. Mohammadi, M. Ghasemlou, S.M. Ojagh, S.M. Hosseini, and R. Khaksar, "Characterization of antioxidant-antimicrobial κ-carrageenan films containing Satureja hortensis essential oil," Int. J. Biol. Macromol. 52(1), 116–124 (2013).

DOI: 10.1016/j.ijbiomac.2012.08.026

Google Scholar

[11] C. Qin, W. Yang, Y. Wang, L. Zhang, and A. Lu, "Robust, magnetic cellulose/Fe3O4 film with anisotropic sensory property," Cellulose 28(4), 2353–2364 (2021).

DOI: 10.1007/s10570-020-03634-4

Google Scholar

[12] T. Karbowiak, H. Hervet, L. Léger, D. Champion, F. Debeaufort, and A. Voilley, "Effect of plasticizers (water and glycerol) on the diffusion of a small molecule in iota-carrageenan biopolymer films for edible coating application," Biomacromolecules 7(6), 2011–2019 (2006).

DOI: 10.1021/bm060179r

Google Scholar

[13] A.L. Daniel-da-Silva, R. Lóio, J.A. Lopes-da-Silva, T. Trindade, B.J. Goodfellow, and A.M. Gil, "Effects of magnetite nanoparticles on the thermorheological properties of carrageenan hydrogels," J. Colloid Interface Sci. 324(1–2), 205–211 (2008).

DOI: 10.1016/j.jcis.2008.04.051

Google Scholar

[14] M. Kang, M.S. Bin Mohammed Khusrin, Y.J. Kim, B. Kim, B.J. Park, I. Hyun, I.M. Imani, B.O. Choi, and S.W. Kim, "Nature-derived highly tribopositive ϰ-carrageenan-agar composite-based fully biodegradable triboelectric nanogenerators," Nano Energy 100(April), 107480 (2022).

DOI: 10.1016/j.nanoen.2022.107480

Google Scholar

[15] P. Sangeetha, T.M. Selvakumari, S. Selvasekarapandian, S.R. Srikumar, R. Manjuladevi, and M. Mahalakshmi, "Preparation and characterization of biopolymer K-carrageenan with MgCl2 and its application to electrochemical devices," Ionics (Kiel). 26(1), 233–244 (2020).

DOI: 10.1007/s11581-019-03193-0

Google Scholar

[16] A.L. Daniel-Da-Silva, S. Fateixa, A.J. Guiomar, B.F.O. Costa, N.J.O. Silva, T. Trindade, B.J. Goodfellow, and A.M. Gil, "Biofunctionalized magnetic hydrogel nanospheres of magnetite and κ-carrageenan," Nanotechnology 20(35), (2009).

DOI: 10.1088/0957-4484/20/35/355602

Google Scholar

[17] S.J. Iyengar, M. Joy, T. Maity, and J. Chakraborty, "RSC Advances Colloidal properties of water dispersible magnetite nanoparticles by photon correlation spectroscopy †," RSC Adv. 6, 14393–14402 (2016).

DOI: 10.1039/c5ra26488j

Google Scholar

[18] S.M. Yu, A. Laromaine, and A. Roig, "Enhanced stability of superparamagnetic iron oxide nanoparticles in biological media using a pH adjusted-BSA adsorption protocol," J. Nanoparticle Res. 16(7), (2014).

DOI: 10.1007/s11051-014-2484-1

Google Scholar

[19] M.H. Rashid, N. Shahtahmasebi, and M.R. Roknabadi, "Study of structural and magnetic properties of superparamagnetic Fe 3 O 4 / SiO 2 core – shell nanocomposites synthesized with hydrophilic citrate-modi fi ed Fe 3 O 4 seeds via a sol – gel approach," Phys. E Low-Dimensional Syst. Nanostructures 53, 207–216 (2013).

DOI: 10.1016/j.physe.2013.04.032

Google Scholar

[20] F. Dong, W. Guo, J.H. Bae, S.H. Kim, and C.S. Ha, "Highly porous, water-soluble, superparamagnetic, and biocompatible magnetite nanocrystal clusters for targeted drug delivery," Chem. - A Eur. J. 17(45), 12802–12808 (2011).

DOI: 10.1002/chem.201101110

Google Scholar

[21] F. Behrad, M.H.R. Farimani, N. Shahtahmasebi, M.R. Roknabadi, and M. Karimipour, "Synthesis and characterization of Fe 3 O 4 / TiO 2 magnetic and photocatalyst bifunctional core-shell with superparamagnetic," Eur. Phys. J. Plus 130(144), (2015).

DOI: 10.1140/epjp/i2015-15144-y

Google Scholar

[22] Y. Huang, J. Liu, J. Zhang, S. Jin, Y. Jiang, S. Zhang, Z. Li, C. Zhi, G. Du, and H. Zhou, "Flexible quasi-solid-state zinc ion batteries enabled by highly conductive carrageenan bio-polymer electrolyte," RSC Adv. 9(29), 16313–16319 (2019).

DOI: 10.1039/c9ra01120j

Google Scholar

[23] A. Farhan, and N.M. Hani, "Characterization of edible packaging films based on semi-refined kappa-carrageenan plasticized with glycerol and sorbitol," Food Hydrocoll. 64, 48–58 (2017).

DOI: 10.1016/j.foodhyd.2016.10.034

Google Scholar