[1]
N.A. Frey, S. Peng, K. Cheng, and S. Sun, "Magnetic nanoparticles: Synthesis, functionalization, and applications in bioimaging and magnetic energy storage," Chem. Soc. Rev. 38(9), 2532–2542 (2009).
DOI: 10.1039/b815548h
Google Scholar
[2]
M. Mahmoudi, S. Sant, B. Wang, S. Laurent, and T. Sen, "Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy," Adv. Drug Deliv. Rev. 63(1–2), 24–46 (2011).
DOI: 10.1016/j.addr.2010.05.006
Google Scholar
[3]
S.C.N. Tang, and I.M.C. Lo, "Magnetic nanoparticles: Essential factors for sustainable environmental applications," Water Res. 47(8), 2613–2632 (2013).
DOI: 10.1016/j.watres.2013.02.039
Google Scholar
[4]
A.H. Lu, E.L. Salabas, and F. Schüth, "Magnetic nanoparticles: Synthesis, protection, functionalization, and application," Angew. Chemie - Int. Ed. 46(8), 1222–1244 (2007).
DOI: 10.1002/anie.200602866
Google Scholar
[5]
Y. Wang, Y. Zhu, Y. Xue, J. Wang, X. Li, X. Wu, Y.X. Qin, and W. Chen, "Sequential in-situ route to synthesize novel composite hydrogels with excellent mechanical, conductive, and magnetic responsive properties," Mater. Des. 193, 108759 (2020).
DOI: 10.1016/j.matdes.2020.108759
Google Scholar
[6]
K. Liu, L. Han, P. Tang, K. Yang, D. Gan, X. Wang, K. Wang, F. Ren, L. Fang, Y. Xu, Z. Lu, and X. Lu, "An Anisotropic Hydrogel Based on Mussel-Inspired Conductive Ferrofluid Composed of Electromagnetic Nanohybrids," Nano Lett. 19(12), 8343–8356 (2019).
DOI: 10.1021/acs.nanolett.9b00363
Google Scholar
[7]
J. Tang, Z. Tong, Y. Xia, M. Liu, Z. Lv, Y. Gao, T. Lu, S. Xie, Y. Pei, D. Fang, and T.J. Wang, "Super tough magnetic hydrogels for remotely triggered shape morphing," J. Mater. Chem. B 6(18), 2713–2722 (2018).
DOI: 10.1039/c8tb00568k
Google Scholar
[8]
P. Martins, M. Silva, S. Reis, N. Pereira, H. Amorín, and S. Lanceros-Mendez, "Wide-Range Magnetoelectric Response on Hybrid Polymer Composites Based on Filler Type and Content," Polymers (Basel). 9(2), (2017).
DOI: 10.3390/polym9020062
Google Scholar
[9]
A.L. Daniel-da-Silva, T. Trindade, B.J. Goodfellow, B.F.O. Costa, R.N. Correia, and A.M. Gil, "In situ synthesis of magnetite nanoparticles in carrageenan gels," Biomacromolecules 8(8), 2350–2357 (2007).
DOI: 10.1021/bm070096q
Google Scholar
[10]
1S. Shojaee-Aliabadi, H. Hosseini, M.A. Mohammadifar, A. Mohammadi, M. Ghasemlou, S.M. Ojagh, S.M. Hosseini, and R. Khaksar, "Characterization of antioxidant-antimicrobial κ-carrageenan films containing Satureja hortensis essential oil," Int. J. Biol. Macromol. 52(1), 116–124 (2013).
DOI: 10.1016/j.ijbiomac.2012.08.026
Google Scholar
[11]
C. Qin, W. Yang, Y. Wang, L. Zhang, and A. Lu, "Robust, magnetic cellulose/Fe3O4 film with anisotropic sensory property," Cellulose 28(4), 2353–2364 (2021).
DOI: 10.1007/s10570-020-03634-4
Google Scholar
[12]
T. Karbowiak, H. Hervet, L. Léger, D. Champion, F. Debeaufort, and A. Voilley, "Effect of plasticizers (water and glycerol) on the diffusion of a small molecule in iota-carrageenan biopolymer films for edible coating application," Biomacromolecules 7(6), 2011–2019 (2006).
DOI: 10.1021/bm060179r
Google Scholar
[13]
A.L. Daniel-da-Silva, R. Lóio, J.A. Lopes-da-Silva, T. Trindade, B.J. Goodfellow, and A.M. Gil, "Effects of magnetite nanoparticles on the thermorheological properties of carrageenan hydrogels," J. Colloid Interface Sci. 324(1–2), 205–211 (2008).
DOI: 10.1016/j.jcis.2008.04.051
Google Scholar
[14]
M. Kang, M.S. Bin Mohammed Khusrin, Y.J. Kim, B. Kim, B.J. Park, I. Hyun, I.M. Imani, B.O. Choi, and S.W. Kim, "Nature-derived highly tribopositive ϰ-carrageenan-agar composite-based fully biodegradable triboelectric nanogenerators," Nano Energy 100(April), 107480 (2022).
DOI: 10.1016/j.nanoen.2022.107480
Google Scholar
[15]
P. Sangeetha, T.M. Selvakumari, S. Selvasekarapandian, S.R. Srikumar, R. Manjuladevi, and M. Mahalakshmi, "Preparation and characterization of biopolymer K-carrageenan with MgCl2 and its application to electrochemical devices," Ionics (Kiel). 26(1), 233–244 (2020).
DOI: 10.1007/s11581-019-03193-0
Google Scholar
[16]
A.L. Daniel-Da-Silva, S. Fateixa, A.J. Guiomar, B.F.O. Costa, N.J.O. Silva, T. Trindade, B.J. Goodfellow, and A.M. Gil, "Biofunctionalized magnetic hydrogel nanospheres of magnetite and κ-carrageenan," Nanotechnology 20(35), (2009).
DOI: 10.1088/0957-4484/20/35/355602
Google Scholar
[17]
S.J. Iyengar, M. Joy, T. Maity, and J. Chakraborty, "RSC Advances Colloidal properties of water dispersible magnetite nanoparticles by photon correlation spectroscopy †," RSC Adv. 6, 14393–14402 (2016).
DOI: 10.1039/c5ra26488j
Google Scholar
[18]
S.M. Yu, A. Laromaine, and A. Roig, "Enhanced stability of superparamagnetic iron oxide nanoparticles in biological media using a pH adjusted-BSA adsorption protocol," J. Nanoparticle Res. 16(7), (2014).
DOI: 10.1007/s11051-014-2484-1
Google Scholar
[19]
M.H. Rashid, N. Shahtahmasebi, and M.R. Roknabadi, "Study of structural and magnetic properties of superparamagnetic Fe 3 O 4 / SiO 2 core – shell nanocomposites synthesized with hydrophilic citrate-modi fi ed Fe 3 O 4 seeds via a sol – gel approach," Phys. E Low-Dimensional Syst. Nanostructures 53, 207–216 (2013).
DOI: 10.1016/j.physe.2013.04.032
Google Scholar
[20]
F. Dong, W. Guo, J.H. Bae, S.H. Kim, and C.S. Ha, "Highly porous, water-soluble, superparamagnetic, and biocompatible magnetite nanocrystal clusters for targeted drug delivery," Chem. - A Eur. J. 17(45), 12802–12808 (2011).
DOI: 10.1002/chem.201101110
Google Scholar
[21]
F. Behrad, M.H.R. Farimani, N. Shahtahmasebi, M.R. Roknabadi, and M. Karimipour, "Synthesis and characterization of Fe 3 O 4 / TiO 2 magnetic and photocatalyst bifunctional core-shell with superparamagnetic," Eur. Phys. J. Plus 130(144), (2015).
DOI: 10.1140/epjp/i2015-15144-y
Google Scholar
[22]
Y. Huang, J. Liu, J. Zhang, S. Jin, Y. Jiang, S. Zhang, Z. Li, C. Zhi, G. Du, and H. Zhou, "Flexible quasi-solid-state zinc ion batteries enabled by highly conductive carrageenan bio-polymer electrolyte," RSC Adv. 9(29), 16313–16319 (2019).
DOI: 10.1039/c9ra01120j
Google Scholar
[23]
A. Farhan, and N.M. Hani, "Characterization of edible packaging films based on semi-refined kappa-carrageenan plasticized with glycerol and sorbitol," Food Hydrocoll. 64, 48–58 (2017).
DOI: 10.1016/j.foodhyd.2016.10.034
Google Scholar