[1]
N. Karić et al., 'Bio-waste valorisation: Agricultural wastes as biosorbents for removal of (in)organic pollutants in wastewater treatment', Chem. Eng. J. Adv., vol. 9, p.100239, Mar. 2022.
DOI: 10.1016/j.ceja.2021.100239
Google Scholar
[2]
L. Hagman and R. Feiz, 'Advancing the Circular Economy Through Organic by-Product Valorisation: A Multi-criteria Assessment of a Wheat-Based Biorefinery', Waste Biomass Valorization, vol. 12, no. 11, p.6205–6217, Nov. 2021.
DOI: 10.1007/s12649-021-01440-y
Google Scholar
[3]
S. P. Bangar, P. Kajla, and T. Ghosh, 'Valorization of wheat straw in food packaging: A source of cellulose', Int. J. Biol. Macromol., vol. 227, p.762–776, Feb. 2023.
DOI: 10.1016/j.ijbiomac.2022.12.199
Google Scholar
[4]
Q. Dou and H. S. Park, 'Perspective on High-Energy Carbon-Based Supercapacitors', ENERGY Environ. Mater., vol. 3, no. 3, p.286–305, 2020.
DOI: 10.1002/eem2.12102
Google Scholar
[5]
K. Singhal, S. Mehtab, M. Pandey, and M. G. H. Zaidi, 'Sustainable development of graphene oxide from pine leaves for electrochemical energy storage and corrosion protection', Curr. Res. Green Sustain. Chem., vol. 5, p.100266, Jan. 2022.
DOI: 10.1016/j.crgsc.2022.100266
Google Scholar
[6]
K. Singhal, S. Mehtab, B. Bhushan Upreti, and M. G. H. Zaidi, 'Recent Advances in Biochar Modification for Energy Storage in Supercapacitors: A Review', Adv. Mater. Lett., vol. 12, no. 2, p.1–8, Feb. 2021.
DOI: 10.5185/amlett.2021.021599
Google Scholar
[7]
Y. Luo et al., 'Stretchable and Flexible Non-Enzymatic Glucose Sensor Based on Poly(ether sulfone)-Derived Laser-Induced Graphene for Wearable Skin Diagnostics', Adv. Mater. Technol., vol. 7, no. 9, p.2101571, 2022.
DOI: 10.1002/admt.202101571
Google Scholar
[8]
J. de la Roche, I. López-Cifuentes, and A. Jaramillo-Botero, 'Influence of lasing parameters on the morphology and electrical resistance of polyimide-based laser-induced graphene (LIG)', Carbon Lett., vol. 33, no. 2, p.587–595, Mar. 2023.
DOI: 10.1007/s42823-022-00447-2
Google Scholar
[9]
C. Zhu et al., 'Direct laser writing of graphene films from a polyether ether ketone precursor', J. Mater. Sci., vol. 54, no. 5, p.4192–4201, Mar. 2019.
DOI: 10.1007/s10853-018-3123-5
Google Scholar
[10]
S. Wang et al., 'All-solid-state supercapacitors from natural lignin-based composite film by laser direct writing', Appl. Phys. Lett., vol. 115, no. 8, p.083904, Aug. 2019.
DOI: 10.1063/1.5118340
Google Scholar
[11]
J. Tharunkumar, V. K. Arosha, A. K. Bajhaiya, and S. Rakesh, 'Optimizing alkaline pretreatment for delignification of paddy straw and sugarcane bagasse to enhance bioethanol production', Biomass Convers. Biorefinery, Feb. 2024.
DOI: 10.1007/s13399-024-05458-9
Google Scholar
[12]
I. M. Fareez, N. A. Ibrahim, W. M. H. Wan Yaacob, N. A. Mamat Razali, A. H. Jasni, and F. Abdul Aziz, 'Characteristics of cellulose extracted from Josapine pineapple leaf fibre after alkali treatment followed by extensive bleaching', Cellulose, vol. 25, no. 8, p.4407–4421, Aug. 2018.
DOI: 10.1007/s10570-018-1878-0
Google Scholar
[13]
D.-T. Van-Pham, T. Y. N. Pham, M. C. Tran, C.-N. Nguyen, and Q. Tran-Cong-Miyata, 'Extraction of thermally stable cellulose nanocrystals in short processing time from waste newspaper by conventional acid hydrolysis', Mater. Res. Express, vol. 7, no. 6, p.065004, Jun. 2020.
DOI: 10.1088/2053-1591/ab9668
Google Scholar
[14]
J. Jeong, S. Kim, S. Yun, X. Yang, and Y. J. Kim, 'Preparation and Characterization of Low CTE Poly(ethersulfone) Using Lignin Nano Composites as Flexible Substrates', Polymers, vol. 15, no. 14, Art. no. 14, Jan. 2023.
DOI: 10.3390/polym15143113
Google Scholar
[15]
J. Giri et al., 'Structural, thermal and mechanical properties of composites of poly(butylene adipate-co-terephthalate) with wheat straw microcrystalline cellulose', Polym. Bull., vol. 78, no. 9, p.4779–4795, Sep. 2021.
DOI: 10.1007/s00289-020-03339-5
Google Scholar
[16]
Yu. N. Malyar et al., 'Sulfation of wheat straw soda lignin: Role of solvents and catalysts', Catal. Today, vol. 397–399, p.397–406, Aug. 2022.
DOI: 10.1016/j.cattod.2021.07.033
Google Scholar
[17]
F. Mahmood, H. Zhang, J. Lin, and C. Wan, 'Laser-Induced Graphene Derived from Kraft Lignin for Flexible Supercapacitors', ACS Omega, vol. 5, no. 24, p.14611–14618, Jun. 2020.
DOI: 10.1021/acsomega.0c01293
Google Scholar
[18]
H. Kim, S. Hwang, T. Hwang, J. B. In, and J. Yeo, 'Digitally Patterned Mesoporous Carbon Nanostructures of Colorless Polyimide for Transparent and Flexible Micro-Supercapacitor', Energies, vol. 14, no. 9, Art. no. 9, Jan. 2021.
DOI: 10.3390/en14092547
Google Scholar
[19]
X.-Y. Fu, R.-Y. Shu, C.-J. Ma, Y.-Y. Zhang, H.-B. Jiang, and M.-N. Yao, 'Self-assembled MXene-graphene oxide composite enhanced laser-induced graphene based electrodes towards conformal supercapacitor applications', Appl. Surf. Sci., vol. 631, p.157549, Sep. 2023.
DOI: 10.1016/j.apsusc.2023.157549
Google Scholar