[1]
Y. Zhou, L. Chen, M Jian, Y. Liu, Recent research progress of ferrite multielement microwave absorbing composites, Adv. Eng. Mater. 24 12 (2022) 2200526.
DOI: 10.1002/adem.202200526
Google Scholar
[2]
X. Xiang, Z. Yang, G. Fang, Y. Tang, Y. Li, Y. Zhang, D.H. Kim, C. Liu, Tailoring tactics for optimizing microwave absorbing behaviors in ferrite materials, Mater. Today Phys. 36 (2023) 101184.
DOI: 10.1016/j.mtphys.2023.101184
Google Scholar
[3]
S. J. Salih, W. M. Mahmood, Review on magnetic spinel ferrite (MFe2O4) nanoparticles: From synthesis to application, Heliyon, 9 6 (2023) e16601.
DOI: 10.1016/j.heliyon.2023.e16601
Google Scholar
[4]
H. Vijayan, A. P. Laursen, M. Stingaciu, P. Shyam, F. H. Gjørup, J. Simonsen, and M. Christensen, High-performance hexaferrite ceramic magnets made from nanoplatelets of ferrihydrite by high-temperature calcination for permanent magnet applications, ACS Appl. Nano Mater., 6 10 (2023) 8156–8167.
DOI: 10.1021/acsanm.2c05227
Google Scholar
[5]
A. Dhingra, O.P. Thakur, R. Pandey, Enhanced magnetic properties of single domain Al-substituted strontium hexaferrite (SrFe12−xAlxO19) synthesized via hydrothermal method for permanent magnets, J. Alloys Compd. 1001 (2024) 175132.
DOI: 10.1016/j.jallcom.2024.175132
Google Scholar
[6]
M. Suthar, D. Khare, A. Gangwar, S. Banerjee, N.K. Prasad, A.K. Dubey, P.K. Roy, Structural, magnetic, and biocompatibility evaluations of chromium substituted barium hexaferrite (Co2–Y) for hyperthermia application, Mater. Chem. Phys. 296 (2023) 127348.
DOI: 10.1016/j.matchemphys.2023.127348
Google Scholar
[7]
M. Thakur, C. Singh, K. C. J. Raju, B. Arun, T.Tchouank Tekou Carol, A.K. Srivastava, Fabrication of bicomponent Co–La substituted strontium hexaferrite for tunable microwave absorber application: Structural, morphological, reflection loss, input impedance metrics, Physica B: Condensed Matter, 679 (2024) 415735.
DOI: 10.1016/j.physb.2024.415735
Google Scholar
[8]
B. C. Manjunatha, P. Puneeth Kumar, N. Pushpa, P. Shankar, B.M. Nagabhushana, Study of structural and magnetic features of aluminum substituted hexaferrites of calcium suitable for memory storage application, Mater. Today:. Proc. 89 1 (2023) 14-18.
DOI: 10.1016/j.matpr.2023.03.637
Google Scholar
[9]
R. A. Pawar, S. M. Patange, P.M. Dighe, S. S. Meena, A. G. Al-Sehemi, M. Pannipara, S. S. Jadhav, Influence of cerium ions on structure-dependent magnetic properties of Ba–Sr M-type hexaferrite nanocrystals, J Rare Earths. 42 2 (2024) 364-372.
DOI: 10.1016/j.jre.2023.01.020
Google Scholar
[10]
Ch. Rambabu, S. Uppugalla, R. Verma, A. Ramakrishna, N. Murali, Ch. Shivanarayana, D. Parajuli, B. Suryanarayana, K. M. Batoo, Sajjad Hussain, P.V. Lakshmi Narayana, Effect of La3+and Ni2+ substitution on Sr1-xLaxFe12-yNiyO19 hexaferrite structural, magnetic, and dielectric properties, Mater. Sci. Eng. B. 289 (2023) 116257.
DOI: 10.1016/j.mseb.2022.116257
Google Scholar
[11]
Yohanes Edi Gunanto Henni Sitompul, Maya Puspitasari Izaak, Eric Jobiliong, Y Yunasfi, Jan Setiawan, Wisnu Ari Adi and Azwar Manaf, The Impact of Al3+ ion substitution on microwave absorption of hexaferrite compound Ba0.6Sr0.4Fe12−xAlxO19 (x = 0.25, 0.50, 0.75, and 1.00), Phys. Scr. 99 (2024) 025002.
DOI: 10.1088/1402-4896/ad1799
Google Scholar
[12]
I. Mohammed, J. Mohammed, T. T. Carol T, A.K. Srivastava, Effect of Dy3+-Cu2+ doping on structural, magnetic and electromagnetic properties of Co2Y-type hexaferrite, Ceram. Int. 49 10 (2023) 16467-16476.
DOI: 10.1016/j.ceramint.2023.02.008
Google Scholar
[13]
A. Yu. Mironovich, V.G. Kostishin, H.I. Al-Khafaji, A.V. Timofeev, A.I. Ril, R.I. Shakirzyanov, E.S. Savchenko, S.E. Yamilov, Magnetic and structural properties of Co-substituted barium hexaferrite synthesized by hydrothermal method, J. Magn. Magn. Mater. 588 B (2023) 171469.
DOI: 10.1016/j.jmmm.2023.171469
Google Scholar
[14]
P. da Silva-Soares, L. da Costa-Catique, F. Guerrero, P.A. Mariño-Castellanos, E. Govea-Alcaide, Y. Romaguera-Barcelay, A.R. Rodrigues, E. Padrón-Hernández, R. Peña-Garcia, Investigation of structural and magnetic properties of Al substituted Ba0.9La0.1Fe12-xAlxO19 hexaferrites prepared by solid-state reaction method, J. Magn. Magn. Mater. 547 (2022) 168958.
DOI: 10.1016/j.jmmm.2021.168958
Google Scholar
[15]
M. Basak, Md. L. Rahman, Md. F. Ahmed, B. Biswas, N. Sharmin, The use of X-ray diffraction peak profile analysis to determine the structural parameters of cobalt ferrite nanoparticles using Debye-Scherrer, Williamson-Hall, Halder-Wagner and Size-strain plot: Different precipitating agent approach, J. Alloys Compd. 895 2 (2022) 162694.
DOI: 10.1016/j.jallcom.2021.162694
Google Scholar
[16]
E. Yustanti, A. Noviyanto, A. N. Fauziah, B. Lubis, A. Trenggono, A. Taufiq, Hydrothermal Parameter Control for the Fabrication of an Excellent Core-Shell Structure in Barium Hexaferrite for Radar Absorbing Materials. Available at SSRN: https://ssrn.com/abstract=4588522 or.
DOI: 10.2139/ssrn.4588522
Google Scholar
[17]
Y. Poplavko, The basics of dielectric spectroscopy, in Electronic and Optical Materials, Dielectric Spectroscopy of Electronic Materials: Applied Physics of Dielectrics, Woodhead Publishing, Cambridge, 2021, pp.1-40.
DOI: 10.1016/b978-0-12-823518-8.00003-7
Google Scholar
[18]
Y. Wang, S. Li, J. Yi, Electronic and magnetic properties of Co doped MoS2 monolayer, Sci Rep. 6 (2016) 24153. DOI: 10.1038/srep24153 (2016).
DOI: 10.1038/srep24153
Google Scholar
[19]
H. Kazemi, M. Moradi, G.H. Bordbar, Investigating the effect of changing the nanostructure of the core in the core–shell assembly for high-efficiency electromagnetic wave absorbers, ACS Appl. Electron. Mater., 5 3 (2023) 1778–1792.
DOI: 10.1021/acsaelm.3c00001
Google Scholar
[20]
S. Tongay, S. S. Varnoosfaderani, B. R. Appleton, J. Wu, A.F. Hebard, Magnetic properties of MoS2: Existence of ferromagnetism, Appl. Phys. Lett. 101 (2012) 123105.
DOI: 10.1063/1.4753797
Google Scholar