Structural, Dielectric, and Magnetic Characterization of Ba0.6Sr0.4Fe11.50Al0.50O19/MoS2 Composite

Article Preview

Abstract:

In this paper, a Ba0.6Sr0.4Fe11.50Al0.50O19/MoS2 composite with a weight ratio of 1:9 has been successfully created. The Ba0.6Sr0.4Fe11.50Al0.50O19/MoS2 was synthesized in HEM for 35 hours before sintered at 1000°C for 5 hours. The Ba0.6Sr0.4Fe11.50Al0.50O19/MoS2 composite was characterized using XRD for phase formation, crystal structure, and lattice parameters. Based on the XRD results, the Ba0.6Sr0.4Fe11.50Al0.50O19/MoS2 composite has two phases with different crystal structures. SEM characterization for surface morphology and particle size. SEM results show heterogeneous particles, but the particle size is not uniform at 0.2-0.6 µm. Measurements of the dielectric constant and dielectric loss are shown as a function of frequency. VSM is used to characterize samples magnetically. The VSM results show ferromagnetic behaviour in the Ba0.6Sr0.4Fe11.50Al0.50O19/MoS2 composite with the value of Mr, Ms, and Hc are about 20 emu/g, 40.769 emu/g, and 4.08 kOe, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1152)

Pages:

39-44

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Zhou, L. Chen, M Jian, Y. Liu, Recent research progress of ferrite multielement microwave absorbing composites, Adv. Eng. Mater. 24 12 (2022) 2200526.

DOI: 10.1002/adem.202200526

Google Scholar

[2] X. Xiang, Z. Yang, G. Fang, Y. Tang, Y. Li, Y. Zhang, D.H. Kim, C. Liu, Tailoring tactics for optimizing microwave absorbing behaviors in ferrite materials, Mater. Today Phys. 36 (2023) 101184.

DOI: 10.1016/j.mtphys.2023.101184

Google Scholar

[3] S. J. Salih, W. M. Mahmood, Review on magnetic spinel ferrite (MFe2O4) nanoparticles: From synthesis to application, Heliyon, 9 6 (2023) e16601.

DOI: 10.1016/j.heliyon.2023.e16601

Google Scholar

[4] H. Vijayan, A. P. Laursen, M. Stingaciu, P. Shyam, F. H. Gjørup, J. Simonsen, and M. Christensen, High-performance hexaferrite ceramic magnets made from nanoplatelets of ferrihydrite by high-temperature calcination for permanent magnet applications, ACS Appl. Nano Mater., 6 10 (2023) 8156–8167.

DOI: 10.1021/acsanm.2c05227

Google Scholar

[5] A. Dhingra, O.P. Thakur, R. Pandey, Enhanced magnetic properties of single domain Al-substituted strontium hexaferrite (SrFe12−xAlxO19) synthesized via hydrothermal method for permanent magnets, J. Alloys Compd. 1001 (2024) 175132.

DOI: 10.1016/j.jallcom.2024.175132

Google Scholar

[6] M. Suthar, D. Khare, A. Gangwar, S. Banerjee, N.K. Prasad, A.K. Dubey, P.K. Roy, Structural, magnetic, and biocompatibility evaluations of chromium substituted barium hexaferrite (Co2–Y) for hyperthermia application, Mater. Chem. Phys. 296 (2023) 127348.

DOI: 10.1016/j.matchemphys.2023.127348

Google Scholar

[7] M. Thakur, C. Singh, K. C. J. Raju, B. Arun, T.Tchouank Tekou Carol, A.K. Srivastava, Fabrication of bicomponent Co–La substituted strontium hexaferrite for tunable microwave absorber application: Structural, morphological, reflection loss, input impedance metrics, Physica B: Condensed Matter, 679 (2024) 415735.

DOI: 10.1016/j.physb.2024.415735

Google Scholar

[8] B. C. Manjunatha, P. Puneeth Kumar, N. Pushpa, P. Shankar, B.M. Nagabhushana, Study of structural and magnetic features of aluminum substituted hexaferrites of calcium suitable for memory storage application, Mater. Today:. Proc. 89 1 (2023) 14-18.

DOI: 10.1016/j.matpr.2023.03.637

Google Scholar

[9] R. A. Pawar, S. M. Patange, P.M. Dighe, S. S. Meena, A. G. Al-Sehemi, M. Pannipara, S. S. Jadhav, Influence of cerium ions on structure-dependent magnetic properties of Ba–Sr M-type hexaferrite nanocrystals, J Rare Earths. 42 2 (2024) 364-372.

DOI: 10.1016/j.jre.2023.01.020

Google Scholar

[10] Ch. Rambabu, S. Uppugalla, R. Verma, A. Ramakrishna, N. Murali, Ch. Shivanarayana, D. Parajuli, B. Suryanarayana, K. M. Batoo, Sajjad Hussain, P.V. Lakshmi Narayana, Effect of La3+and Ni2+ substitution on Sr1-xLaxFe12-yNiyO19 hexaferrite structural, magnetic, and dielectric properties, Mater. Sci. Eng. B. 289 (2023) 116257.

DOI: 10.1016/j.mseb.2022.116257

Google Scholar

[11] Yohanes Edi Gunanto Henni Sitompul, Maya Puspitasari Izaak, Eric Jobiliong, Y Yunasfi, Jan Setiawan, Wisnu Ari Adi and Azwar Manaf, The Impact of Al3+ ion substitution on microwave absorption of hexaferrite compound Ba0.6Sr0.4Fe12−xAlxO19 (x = 0.25, 0.50, 0.75, and 1.00), Phys. Scr. 99 (2024) 025002.

DOI: 10.1088/1402-4896/ad1799

Google Scholar

[12] I. Mohammed, J. Mohammed, T. T. Carol T, A.K. Srivastava, Effect of Dy3+-Cu2+ doping on structural, magnetic and electromagnetic properties of Co2Y-type hexaferrite, Ceram. Int. 49 10 (2023) 16467-16476.

DOI: 10.1016/j.ceramint.2023.02.008

Google Scholar

[13] A. Yu. Mironovich, V.G. Kostishin, H.I. Al-Khafaji, A.V. Timofeev, A.I. Ril, R.I. Shakirzyanov, E.S. Savchenko, S.E. Yamilov, Magnetic and structural properties of Co-substituted barium hexaferrite synthesized by hydrothermal method, J. Magn. Magn. Mater. 588 B (2023) 171469.

DOI: 10.1016/j.jmmm.2023.171469

Google Scholar

[14] P. da Silva-Soares, L. da Costa-Catique, F. Guerrero, P.A. Mariño-Castellanos, E. Govea-Alcaide, Y. Romaguera-Barcelay, A.R. Rodrigues, E. Padrón-Hernández, R. Peña-Garcia, Investigation of structural and magnetic properties of Al substituted Ba0.9La0.1Fe12-xAlxO19 hexaferrites prepared by solid-state reaction method, J. Magn. Magn. Mater. 547 (2022) 168958.

DOI: 10.1016/j.jmmm.2021.168958

Google Scholar

[15] M. Basak, Md. L. Rahman, Md. F. Ahmed, B. Biswas, N. Sharmin, The use of X-ray diffraction peak profile analysis to determine the structural parameters of cobalt ferrite nanoparticles using Debye-Scherrer, Williamson-Hall, Halder-Wagner and Size-strain plot: Different precipitating agent approach, J. Alloys Compd. 895 2 (2022) 162694.

DOI: 10.1016/j.jallcom.2021.162694

Google Scholar

[16] E. Yustanti, A. Noviyanto, A. N. Fauziah, B. Lubis, A. Trenggono, A. Taufiq, Hydrothermal Parameter Control for the Fabrication of an Excellent Core-Shell Structure in Barium Hexaferrite for Radar Absorbing Materials. Available at SSRN: https://ssrn.com/abstract=4588522 or.

DOI: 10.2139/ssrn.4588522

Google Scholar

[17] Y. Poplavko, The basics of dielectric spectroscopy, in Electronic and Optical Materials, Dielectric Spectroscopy of Electronic Materials: Applied Physics of Dielectrics, Woodhead Publishing, Cambridge, 2021, pp.1-40.

DOI: 10.1016/b978-0-12-823518-8.00003-7

Google Scholar

[18] Y. Wang, S. Li, J. Yi, Electronic and magnetic properties of Co doped MoS2 monolayer, Sci Rep. 6 (2016) 24153. DOI: 10.1038/srep24153 (2016).

DOI: 10.1038/srep24153

Google Scholar

[19] H. Kazemi, M. Moradi, G.H. Bordbar, Investigating the effect of changing the nanostructure of the core in the core–shell assembly for high-efficiency electromagnetic wave absorbers, ACS Appl. Electron. Mater., 5 3 (2023) 1778–1792.

DOI: 10.1021/acsaelm.3c00001

Google Scholar

[20] S. Tongay, S. S. Varnoosfaderani, B. R. Appleton, J. Wu, A.F. Hebard, Magnetic properties of MoS2: Existence of ferromagnetism, Appl. Phys. Lett. 101 (2012) 123105.

DOI: 10.1063/1.4753797

Google Scholar