Theory for Rotation-Induced Band Splitting in Hollow-Pillar Phononic Metamaterials

Article Preview

Abstract:

Hollow-pillar phononic metamaterials (PM) operating at the whispering gallery modes can be modulated by external rotation, and they exhibit the band splitting linearly related to the angular rate. This phenomenon holds great potential for applications in angular velocity measurement and dynamically adaptive noise reduction. In this paper, we establish an equivalent model for the interaction between elastic waves and such periodic PM. By combining dynamic coupling equations with the transfer matrix method, we theoretically reveal the existence of rotation-induced band splitting and explain its causes. Further validation of the band splitting theory is achieved through comparison with finite element simulation results. This study serves as a theoretical supplement to these rotation-modulated PM, elucidating the mechanism of how external rotation affects band splitting at a theoretical level and inspiring the development of more similar dynamically adaptive materials.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1153)

Pages:

45-55

Citation:

Online since:

June 2025

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Alrowaili, M. Aouassa, M. Mahmoud, K. S. El-Nasser, H. A. Elsayed, T. Taha, A. M. Ahmed, A. Hajjiah, and A. Mehaney, Locally resonant porous phononic crystal sensor for heavy metals detection: A new approach of highly sensitive liquid sensors, J. Mol. Liq. 369, 120964 (2023).

DOI: 10.1016/j.molliq.2022.120964

Google Scholar

[2] R. Sharaf, S. Darbari, and A. Khelif, Vertical surface phononic Mach-Zehnder interferometer, Phys. Rev. Appl. 19, 024071 (2023).

DOI: 10.1103/physrevapplied.19.024071

Google Scholar

[3] S. E. Zaki, M. A. Basyooni, W. Belaid, M. Tihtih, J. E. F. Ibrahim, and G. Attia, Terahertz resonance frequency through ethylene glycol phononic multichannel sensing via 2D MoS2/PtSe2 structure, Mater. Chem. Phys. 292, 126863 (2022).

DOI: 10.1016/j.matchemphys.2022.126863

Google Scholar

[4] A. Biçer, A. S. Durmuslar, N. Korozlu, and A. Cicek, An acoustic add-drop filter in a phononic crystal for high-sensitivity detection of methanol in ethanol in the liquid phase, IEEE Sens. J. 22, 14799 (2022).

DOI: 10.1109/jsen.2022.3185926

Google Scholar

[5] F. Gao, S. Benchabane, A. Bermak, S. Dong, and A. Khelif, On-chip tightly confined guiding and splitting of surface acoustic waves using line defects in phononic crystals, Adv. Funct. Mater. 33, 2213625 (2023).

DOI: 10.1002/adfm.202213625

Google Scholar

[6] Y. Zhou, N. Zhang, D. J. Bisharat, R. J. Davis, Z. Zhang, J. Friend, P. R. Bandaru, and D. F. Sievenpiper, On-chip unidirectional waveguiding for surface acoustic waves along a defect line in a triangular lattice, Phys. Rev. Appl. 19, 024053 (2023).

DOI: 10.1103/physrevapplied.19.024053

Google Scholar

[7] D. Hatanaka and H. Yamaguchi, Real-space characterization of cavity-coupled waveguide systems in hypersonic phononic crystals, Phys. Rev. Appl. 13, 024005 (2020).

DOI: 10.1103/physrevapplied.13.024005

Google Scholar

[8] H.-W. Dong, Y.-S. Wang, and C. Zhang, Inverse design of high-Q wave filters in two-dimensional phononic crystals by topology optimization, Ultrasonics 76, 109 (2017).

DOI: 10.1016/j.ultras.2016.12.018

Google Scholar

[9] X. Zhang, Y. Li, Y. Wang, Z. Jia, and Y. Luo, Narrow-band filter design of phononic crystals with periodic point defects via topology optimization, Int. J. Mech. Sci. 212, 106829 (2021).

DOI: 10.1016/j.ijmecsci.2021.106829

Google Scholar

[10] J. Dhillon, E. Walker, A. Krokhin, and A. Neogi, Energy trapping in a phononic crystal cavity enhanced by nonreciprocal acoustic wave transmission, Appl. Acoust. 203, 109192 (2023).

DOI: 10.1016/j.apacoust.2022.109192

Google Scholar

[11] Z. He, G. Zhang, X. Chen, Y. Cong, S. Gu, and J. Hong, Elastic wave harvesting in piezoelectric-defect-introduced phononic crystal microplates, Int. J. Mech. Sci. 239, 107892 (2023).

DOI: 10.1016/j.ijmecsci.2022.107892

Google Scholar

[12] Y. M. Luo, T. T. Huang, Y. Zhang, H. H. Xu, Y. M. Xie, and X. Ren, Novel meter-scale seismic metamaterial with low frequency wide bandgap for Lamb waves, Eng. Struct. 275, 115321 (2023).

DOI: 10.1016/j.engstruct.2022.115321

Google Scholar

[13] X. An, X. Yuan, and H. Fan, Meta-kagome lattice structures for broadband vibration isolation, Eng. Struct. 277, 115403 (2023).

DOI: 10.1016/j.engstruct.2022.115403

Google Scholar

[14] L. Mercadé, R. Ortiz, A. Grau, A. Griol, D. Navarro-Urrios, and A. Martínez, Engineering multiple ghz mechanical modes in optomechanical crystal cavities, Phys. Rev. Appl. 19, 014043 (2023).

DOI: 10.1103/physrevapplied.19.014043

Google Scholar

[15] G. Madiot, R. C. Ng, G. Arregui, O. Florez, M. Albrechtsen, S. Stobbe, P. D. García, and C. M. Sotomayor-Torres, Optomechanical generation of coherent GHz vibrations in a phononic waveguide, Phys. Rev. Lett. 130, 106903 (2023).

DOI: 10.1103/physrevlett.130.106903

Google Scholar

[16] T.-T. Wu, Z.-G. Huang, and S. Lin, Surface and bulk acoustic waves in two-dimensional phononic crystal consisting of materials with general anisotropy, Phys. Rev. B 69, 094301 (2004).

DOI: 10.1103/physrevb.69.094301

Google Scholar

[17] J.-H. Sun and T.-T. Wu, Propagation of surface acoustic waves through sharply bent two-dimensional phononic crystal waveguides using a finite-difference time-domain method, Phys. Rev. B 74, 174305 (2006).

DOI: 10.1103/physrevb.74.174305

Google Scholar

[18] S. Benchabane, O. Gaiffe, R. Salut, G. Ulliac, V. Laude, and K. Kokkonen, Guidance of surface waves in a micron-scale phononic crystal line-defect waveguide, Appl. Phys. Lett. 106, 081903 (2015).

DOI: 10.1063/1.4913532

Google Scholar

[19] A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibi, and V. Laude, Complete band gaps in two-dimensional phononic crystal slabs, Phys. Rev. E 74, 046610 (2006).

DOI: 10.1103/physreve.74.046610

Google Scholar

[20] J.-C. Hsu and T.-T. Wu, Efficient formulation for band-structure calculations of two-dimensional phononic-crystal plates, Phys. Rev. B 74, 144303 (2006).

DOI: 10.1103/physrevb.74.144303

Google Scholar

[21] Y.-F. Wang, T.-T. Wang, J.-P. Liu, Y.-S. Wang, and V. Laude, Guiding and splitting lamb waves in coupled-resonator elastic waveguides, Comp. Struct. 206, 588 (2018).

DOI: 10.1016/j.compstruct.2018.08.088

Google Scholar

[22] N. Kherraz, F.-H. Chikh-Bled, R. Sainidou, B. Morvan, and P. Rembert, Tunable phononic structures using Lamb waves in a piezoceramic plate, Phys. Rev. B 99, 094302 (2019).

DOI: 10.1103/physrevb.99.094302

Google Scholar

[23] Y. Liu, A. Talbi, B. Djafari-Rouhani, L. Drbohlavová, V. Mortet, O. B. Matar, P. Pernod et al., Interaction of Love waves with coupled cavity modes in a 2D Holey phononic crystal, Phys. Lett. A 383, 1502 (2019).

DOI: 10.1016/j.physleta.2019.01.053

Google Scholar

[24] Y. Jin, N. Fernez, Y. Pennec, B. Bonello, R. P. Moiseyenko, S. Hémon, Y. Pan, and B. Djafari-Rouhani, Tunable waveguide and cavity in a phononic crystal plate by controlling whispering-gallery modes in hollow pillars, Phys. Rev. B 93, 054109 (2016).

DOI: 10.1103/physrevb.93.054109

Google Scholar

[25] Y. Jin, Y. Pennec, Y. Pan, and B. Djafari-Rouhani, Phononic crystal plate with hollow pillars actively controlled by fluid filling, Crystals 6, 64 (2016).

DOI: 10.3390/cryst6060064

Google Scholar

[26] Y. Jin, Y. Pennec, Y. Pan, and B. Djafari-Rouhani, Phononic crystal plate with hollow pillars connected by thin bars, J. Phys. D 50, 035301 (2017).

DOI: 10.1088/1361-6463/50/3/035301

Google Scholar

[27] W. Yuan, J. Zhao, B. Bonello, B. Djafari-Rouhani, X. Zhang, Y. Pan, and Z. Zhong, Compact waveguide and guided beam pattern based on the whispering-gallery mode of a hollow pillar in a phononic crystal plate, Phys. Rev. Appl. 10, 034010 (2018).

DOI: 10.1103/physrevapplied.10.034010

Google Scholar

[28] Muhammad, C. Lim, J. Reddy, E. Carrera, X. Xu, and Z. Zhou, Surface elastic waves whispering gallery modes based subwavelength tunable waveguide and cavity modes of the phononic crystals, Mech. Adv. Mater. Struct. 27, 1053 (2020).

DOI: 10.1080/15376494.2020.1728451

Google Scholar

[29] J. Sun, S. Yu, Y. Zhang, Q. Li, X. Xi, K. Lu, X. Wu, and D. Xiao, 0.79 ppm scale-factor nonlinearity whole-angle microshell gyroscope realized by real-time calibration of capacitive displacement detection, Microsyst. Nanoeng. 7, 79 (2021).

DOI: 10.1038/s41378-021-00306-6

Google Scholar

[30] Z. Xu, B. Xi, G. Yi, and C. K. Ahn, High-precision control scheme for hemispherical resonator gyroscopes with application to aerospace navigation systems, Aerosp. Sci. Technol. 119, 107168 (2021).

DOI: 10.1016/j.ast.2021.107168

Google Scholar

[31] Z. Xu, W. Zhu, G. Yi, and W. Fan, Dynamic modeling and output error analysis of an imperfect hemispherical shell resonator, J. Sound Vib. 498, 115964 (2021).

DOI: 10.1016/j.jsv.2021.115964

Google Scholar

[32] F Ge, L Zhao, J Xu, et al. Effects of rotation on a phononic crystal operated in whispering gallery modes[J]. Phys. Rev. B, 109, 024107 (2024).

DOI: 10.1103/physrevb.109.024107

Google Scholar

[33] F Ge, L Zhao, J Xu, et al. A novel gyroscope based on the slow surface acoustic wave in a phononic metamaterial. Microsyst Nanoeng 10, 169 (2024).

DOI: 10.1038/s41378-024-00787-1

Google Scholar

[34] Xiao Y, Mace B R, Wen J, et al. Formation and coupling of band gaps in a locally resonant elastic system comprising a string with attached resonators[J]. Physics Letters A, 375(12): 1485-1491 (2011).

DOI: 10.1016/j.physleta.2011.02.044

Google Scholar

[35] L. Meirovitch, Analytical Methods in Vibrations (Prentice Hall,1967).

Google Scholar

[36] M. M. Indaleeb, S. Banerjee, H. Ahmed, M. Saadatzi, and R. Ahmed, Deaf band based engineered dirac cone in a periodic acoustic metamaterial: A numerical and experimental study, Phys. Rev. B 99, 024311 (2019).

DOI: 10.1103/physrevb.99.024311

Google Scholar

[37] Yu D, Liu Y, Wang G, et al. Low frequency torsional vibration gaps in the shaft with locally resonant structures[J]. Physics Letters A, 2006, 348(3-6): 410-415.

DOI: 10.1016/j.physleta.2005.08.067

Google Scholar

[38] Kittel C, McEuen P. Introduction to solid state physics[M]. John Wiley & Sons, 2018.

Google Scholar

[39] J. Y. Cho, High-Performance Micromachined Vibratory Rate and Rate-Integrating Gyroscopes., Ph.D. thesis, 2012.

Google Scholar