[1]
Z. Alrowaili, M. Aouassa, M. Mahmoud, K. S. El-Nasser, H. A. Elsayed, T. Taha, A. M. Ahmed, A. Hajjiah, and A. Mehaney, Locally resonant porous phononic crystal sensor for heavy metals detection: A new approach of highly sensitive liquid sensors, J. Mol. Liq. 369, 120964 (2023).
DOI: 10.1016/j.molliq.2022.120964
Google Scholar
[2]
R. Sharaf, S. Darbari, and A. Khelif, Vertical surface phononic Mach-Zehnder interferometer, Phys. Rev. Appl. 19, 024071 (2023).
DOI: 10.1103/physrevapplied.19.024071
Google Scholar
[3]
S. E. Zaki, M. A. Basyooni, W. Belaid, M. Tihtih, J. E. F. Ibrahim, and G. Attia, Terahertz resonance frequency through ethylene glycol phononic multichannel sensing via 2D MoS2/PtSe2 structure, Mater. Chem. Phys. 292, 126863 (2022).
DOI: 10.1016/j.matchemphys.2022.126863
Google Scholar
[4]
A. Biçer, A. S. Durmuslar, N. Korozlu, and A. Cicek, An acoustic add-drop filter in a phononic crystal for high-sensitivity detection of methanol in ethanol in the liquid phase, IEEE Sens. J. 22, 14799 (2022).
DOI: 10.1109/jsen.2022.3185926
Google Scholar
[5]
F. Gao, S. Benchabane, A. Bermak, S. Dong, and A. Khelif, On-chip tightly confined guiding and splitting of surface acoustic waves using line defects in phononic crystals, Adv. Funct. Mater. 33, 2213625 (2023).
DOI: 10.1002/adfm.202213625
Google Scholar
[6]
Y. Zhou, N. Zhang, D. J. Bisharat, R. J. Davis, Z. Zhang, J. Friend, P. R. Bandaru, and D. F. Sievenpiper, On-chip unidirectional waveguiding for surface acoustic waves along a defect line in a triangular lattice, Phys. Rev. Appl. 19, 024053 (2023).
DOI: 10.1103/physrevapplied.19.024053
Google Scholar
[7]
D. Hatanaka and H. Yamaguchi, Real-space characterization of cavity-coupled waveguide systems in hypersonic phononic crystals, Phys. Rev. Appl. 13, 024005 (2020).
DOI: 10.1103/physrevapplied.13.024005
Google Scholar
[8]
H.-W. Dong, Y.-S. Wang, and C. Zhang, Inverse design of high-Q wave filters in two-dimensional phononic crystals by topology optimization, Ultrasonics 76, 109 (2017).
DOI: 10.1016/j.ultras.2016.12.018
Google Scholar
[9]
X. Zhang, Y. Li, Y. Wang, Z. Jia, and Y. Luo, Narrow-band filter design of phononic crystals with periodic point defects via topology optimization, Int. J. Mech. Sci. 212, 106829 (2021).
DOI: 10.1016/j.ijmecsci.2021.106829
Google Scholar
[10]
J. Dhillon, E. Walker, A. Krokhin, and A. Neogi, Energy trapping in a phononic crystal cavity enhanced by nonreciprocal acoustic wave transmission, Appl. Acoust. 203, 109192 (2023).
DOI: 10.1016/j.apacoust.2022.109192
Google Scholar
[11]
Z. He, G. Zhang, X. Chen, Y. Cong, S. Gu, and J. Hong, Elastic wave harvesting in piezoelectric-defect-introduced phononic crystal microplates, Int. J. Mech. Sci. 239, 107892 (2023).
DOI: 10.1016/j.ijmecsci.2022.107892
Google Scholar
[12]
Y. M. Luo, T. T. Huang, Y. Zhang, H. H. Xu, Y. M. Xie, and X. Ren, Novel meter-scale seismic metamaterial with low frequency wide bandgap for Lamb waves, Eng. Struct. 275, 115321 (2023).
DOI: 10.1016/j.engstruct.2022.115321
Google Scholar
[13]
X. An, X. Yuan, and H. Fan, Meta-kagome lattice structures for broadband vibration isolation, Eng. Struct. 277, 115403 (2023).
DOI: 10.1016/j.engstruct.2022.115403
Google Scholar
[14]
L. Mercadé, R. Ortiz, A. Grau, A. Griol, D. Navarro-Urrios, and A. Martínez, Engineering multiple ghz mechanical modes in optomechanical crystal cavities, Phys. Rev. Appl. 19, 014043 (2023).
DOI: 10.1103/physrevapplied.19.014043
Google Scholar
[15]
G. Madiot, R. C. Ng, G. Arregui, O. Florez, M. Albrechtsen, S. Stobbe, P. D. García, and C. M. Sotomayor-Torres, Optomechanical generation of coherent GHz vibrations in a phononic waveguide, Phys. Rev. Lett. 130, 106903 (2023).
DOI: 10.1103/physrevlett.130.106903
Google Scholar
[16]
T.-T. Wu, Z.-G. Huang, and S. Lin, Surface and bulk acoustic waves in two-dimensional phononic crystal consisting of materials with general anisotropy, Phys. Rev. B 69, 094301 (2004).
DOI: 10.1103/physrevb.69.094301
Google Scholar
[17]
J.-H. Sun and T.-T. Wu, Propagation of surface acoustic waves through sharply bent two-dimensional phononic crystal waveguides using a finite-difference time-domain method, Phys. Rev. B 74, 174305 (2006).
DOI: 10.1103/physrevb.74.174305
Google Scholar
[18]
S. Benchabane, O. Gaiffe, R. Salut, G. Ulliac, V. Laude, and K. Kokkonen, Guidance of surface waves in a micron-scale phononic crystal line-defect waveguide, Appl. Phys. Lett. 106, 081903 (2015).
DOI: 10.1063/1.4913532
Google Scholar
[19]
A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibi, and V. Laude, Complete band gaps in two-dimensional phononic crystal slabs, Phys. Rev. E 74, 046610 (2006).
DOI: 10.1103/physreve.74.046610
Google Scholar
[20]
J.-C. Hsu and T.-T. Wu, Efficient formulation for band-structure calculations of two-dimensional phononic-crystal plates, Phys. Rev. B 74, 144303 (2006).
DOI: 10.1103/physrevb.74.144303
Google Scholar
[21]
Y.-F. Wang, T.-T. Wang, J.-P. Liu, Y.-S. Wang, and V. Laude, Guiding and splitting lamb waves in coupled-resonator elastic waveguides, Comp. Struct. 206, 588 (2018).
DOI: 10.1016/j.compstruct.2018.08.088
Google Scholar
[22]
N. Kherraz, F.-H. Chikh-Bled, R. Sainidou, B. Morvan, and P. Rembert, Tunable phononic structures using Lamb waves in a piezoceramic plate, Phys. Rev. B 99, 094302 (2019).
DOI: 10.1103/physrevb.99.094302
Google Scholar
[23]
Y. Liu, A. Talbi, B. Djafari-Rouhani, L. Drbohlavová, V. Mortet, O. B. Matar, P. Pernod et al., Interaction of Love waves with coupled cavity modes in a 2D Holey phononic crystal, Phys. Lett. A 383, 1502 (2019).
DOI: 10.1016/j.physleta.2019.01.053
Google Scholar
[24]
Y. Jin, N. Fernez, Y. Pennec, B. Bonello, R. P. Moiseyenko, S. Hémon, Y. Pan, and B. Djafari-Rouhani, Tunable waveguide and cavity in a phononic crystal plate by controlling whispering-gallery modes in hollow pillars, Phys. Rev. B 93, 054109 (2016).
DOI: 10.1103/physrevb.93.054109
Google Scholar
[25]
Y. Jin, Y. Pennec, Y. Pan, and B. Djafari-Rouhani, Phononic crystal plate with hollow pillars actively controlled by fluid filling, Crystals 6, 64 (2016).
DOI: 10.3390/cryst6060064
Google Scholar
[26]
Y. Jin, Y. Pennec, Y. Pan, and B. Djafari-Rouhani, Phononic crystal plate with hollow pillars connected by thin bars, J. Phys. D 50, 035301 (2017).
DOI: 10.1088/1361-6463/50/3/035301
Google Scholar
[27]
W. Yuan, J. Zhao, B. Bonello, B. Djafari-Rouhani, X. Zhang, Y. Pan, and Z. Zhong, Compact waveguide and guided beam pattern based on the whispering-gallery mode of a hollow pillar in a phononic crystal plate, Phys. Rev. Appl. 10, 034010 (2018).
DOI: 10.1103/physrevapplied.10.034010
Google Scholar
[28]
Muhammad, C. Lim, J. Reddy, E. Carrera, X. Xu, and Z. Zhou, Surface elastic waves whispering gallery modes based subwavelength tunable waveguide and cavity modes of the phononic crystals, Mech. Adv. Mater. Struct. 27, 1053 (2020).
DOI: 10.1080/15376494.2020.1728451
Google Scholar
[29]
J. Sun, S. Yu, Y. Zhang, Q. Li, X. Xi, K. Lu, X. Wu, and D. Xiao, 0.79 ppm scale-factor nonlinearity whole-angle microshell gyroscope realized by real-time calibration of capacitive displacement detection, Microsyst. Nanoeng. 7, 79 (2021).
DOI: 10.1038/s41378-021-00306-6
Google Scholar
[30]
Z. Xu, B. Xi, G. Yi, and C. K. Ahn, High-precision control scheme for hemispherical resonator gyroscopes with application to aerospace navigation systems, Aerosp. Sci. Technol. 119, 107168 (2021).
DOI: 10.1016/j.ast.2021.107168
Google Scholar
[31]
Z. Xu, W. Zhu, G. Yi, and W. Fan, Dynamic modeling and output error analysis of an imperfect hemispherical shell resonator, J. Sound Vib. 498, 115964 (2021).
DOI: 10.1016/j.jsv.2021.115964
Google Scholar
[32]
F Ge, L Zhao, J Xu, et al. Effects of rotation on a phononic crystal operated in whispering gallery modes[J]. Phys. Rev. B, 109, 024107 (2024).
DOI: 10.1103/physrevb.109.024107
Google Scholar
[33]
F Ge, L Zhao, J Xu, et al. A novel gyroscope based on the slow surface acoustic wave in a phononic metamaterial. Microsyst Nanoeng 10, 169 (2024).
DOI: 10.1038/s41378-024-00787-1
Google Scholar
[34]
Xiao Y, Mace B R, Wen J, et al. Formation and coupling of band gaps in a locally resonant elastic system comprising a string with attached resonators[J]. Physics Letters A, 375(12): 1485-1491 (2011).
DOI: 10.1016/j.physleta.2011.02.044
Google Scholar
[35]
L. Meirovitch, Analytical Methods in Vibrations (Prentice Hall,1967).
Google Scholar
[36]
M. M. Indaleeb, S. Banerjee, H. Ahmed, M. Saadatzi, and R. Ahmed, Deaf band based engineered dirac cone in a periodic acoustic metamaterial: A numerical and experimental study, Phys. Rev. B 99, 024311 (2019).
DOI: 10.1103/physrevb.99.024311
Google Scholar
[37]
Yu D, Liu Y, Wang G, et al. Low frequency torsional vibration gaps in the shaft with locally resonant structures[J]. Physics Letters A, 2006, 348(3-6): 410-415.
DOI: 10.1016/j.physleta.2005.08.067
Google Scholar
[38]
Kittel C, McEuen P. Introduction to solid state physics[M]. John Wiley & Sons, 2018.
Google Scholar
[39]
J. Y. Cho, High-Performance Micromachined Vibratory Rate and Rate-Integrating Gyroscopes., Ph.D. thesis, 2012.
Google Scholar