Effect of Sintering Conditions on Properties of Assisted Pressure Sintered Tungsten Materials

Article Preview

Abstract:

This study investigates the mechanical properties and microstructure of sintered tungsten under varying sintering conditions. Bending strength tests revealed that sintering at 1400 °C resulted in low flexural strength due to inadequate temperature, whereas sintered tungsten at 1500 °C exhibited improved strength attributed to grain growth. However, temperatures exceeding 1600 °C led to excessive grain growth and a subsequent decline in strength, indicative of grain coarsening and potential localized bonding. Additionally, analysis of holding times at 1500 °C demonstrated that extended durations promoted neck bonding between grains, contributing to the formation of interconnected grains and enhanced mechanical properties. This study underscores the importance of optimizing sintering parameters to control grain growth and achieve desired mechanical properties in sintered tungsten materials.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1153)

Pages:

89-94

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Philipps: Journal of Nuclear Materials., Vol. 415 (2011), S2-S9

Google Scholar

[2] R.A. Pitts, S. Carpentier, F. Escourbiac, T. Hirai, V. Komarov, S. Lisgo, A.S. Kukushkin, A. Loarte, M. Merola, A. Sashala Naik, R. Mitteau, M. Sugihara, B. Bazylev, P.C. Stangeby: Journal of Nuclear Materials., Vol. 438, Supplement (2013), p. S48-S56

DOI: 10.1016/j.jnucmat.2013.01.008

Google Scholar

[3] G. Pintsuk, I. Bobin-Vastra, S. Constans, P. Gavila, M. Rödig, B. Riccardi: Journal of Fusion Engineering and Design., Vol. 88, Issue 9-10 (2013), pp.1858-1861

DOI: 10.1016/j.fusengdes.2013.05.091

Google Scholar

[4] Y. Mao, J.W. Coenen, J. Riesch, S. Sistla, J. Almanstotter, B. Jasper, A. Terra, T. Hoschen, H. Gietl, C. Linsmeier, C. Broeckmann: Journal of Composites Part A: Applied Science and Manufacturing., Vol. 107, April (2018), pp.342-353

DOI: 10.1016/j.compositesa.2018.01.022

Google Scholar

[5] J. Ma, J. Zhang, W. Liu, Z. Shen: Journal of Nuclear Materials., Vol. 438, Issues 1-3 (2013), pp.199-203

Google Scholar

[6] D. Shenghua, Y. Tiechui, L. Ruidi, Z. Fanhao, L. Guanghong, Z. Xiang: Journal of Powder Technology., Vol. 310 (2017), pp.264-271

Google Scholar

[7] Z. Jialu, W. Hailiang, W. Hailong, L. Mingliang, H. Jilin, J. Zhu, Z. Biao: International Journal of Refractory Metals and Hard Materials., Available online 28 (2024), 106773

Google Scholar

[8] Q. Zhongyou, W. Zichen, L. Xingyu, Z. Lin, D. Yanhao, Q. Mingli, Y. Junjun, Q. Xuanhui, L. Ju: Journal of Materials Science & Technology., Vol. 126 (2022), pp.203-214

Google Scholar

[9] Z. Dong, N. Liu, Z. Ma, C. Liu, Q. Guo, Y. Yamauchi, H.R. Alamri, Z.A. Alothman, M. Shahriar, A. Hossain, Y. Liu: International Journal of Refractory Metals and Hard Materials., Vol. 69 (2017), pp.266-272

DOI: 10.1016/j.ijrmhm.2017.09.001

Google Scholar

[10] Z. Dong, N. Liu, Z. Ma, C. Liu, Q. Guo, Y. Liu: Journal of Alloys and Compounds., Vol. 695 (2017), pp.2969-2973

Google Scholar