A Review of Materials for Vehicle Structure Based on Specific Strength and Fatigue

Article Preview

Abstract:

In today's changing times, more and more people will use automobiles to get around, and this will consume a lot of natural resources to supply cars, in order to make energy efficiency, reducing the overall weight of the automobile is a direct way to reduce the weight of the automobile, and we need to use materials that can make the weight lighter while maintaining a certain level of strength. This review paper explores the properties of five custom materials: aluminum alloys, magnesium alloys, titanium alloys, carbon fiber, and ceramics. By comparing specific strengths and fatigue resistance, researchers found that customizing aluminum alloy are the most suitable materials for improving energy efficiency and reducing total vehicle weight, while still maintaining a certain level of stiffness. According to the data on the specific strength and fatigue resistance of aluminum alloy, it reaches conclusion that custom aluminum alloys can be used in the design of automotive vehicles as a function of improving fuel efficiency by reducing weight.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1153)

Pages:

57-76

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Zhang, Y. Zou, J. Fan, and H. Guo, "Usage pattern analysis of Beijing private electric vehicles based on real-world data," Energy, vol. 167, p.1074–1085, Jan. 2019.

DOI: 10.1016/j.energy.2018.11.005

Google Scholar

[2] Z. Alemayehu, R. B. Nallamothu, M. Liben, S. K. Nallamothu, and A. K. Nallamothu, "Experimental investigation on characteristics of sisal fiber as composite material for light vehicle body applications," Mater. Today Proc., vol. 38, p.2439–2444, 2021.

DOI: 10.1016/j.matpr.2020.07.386

Google Scholar

[3] E. E. Klu, J. Jiang, G. Wang, B. Gao, A. Ma, and D. Song, "Achieving ultrahigh specific strength of an ultrafine grained Mg–9Li–1Al alloy via the combined processing of ECAP with repeated annealing and rolling," J. Mater. Res. Technol., vol. 25, p.3228–3242, Jul. 2023.

DOI: 10.1016/j.jmrt.2023.06.108

Google Scholar

[4] L. A. Gonçalves, S. Jiménez, A. Cornejo, M. M. Tedesco, and L. G. Barbu, "A high cycle fatigue numerical framework for component-level virtual fatigue testing: Application to a light-duty vehicle lower control arm," Eng. Struct., vol. 311, p.118198, Jul. 2024.

DOI: 10.1016/j.engstruct.2024.118198

Google Scholar

[5] M. Y. Khalid, R. Umer, and K. A. Khan, "Review of recent trends and developments in aluminium 7075 alloy and its metal matrix composites (MMCs) for aircraft applications," Results Eng., vol. 20, p.101372, Dec. 2023.

DOI: 10.1016/j.rineng.2023.101372

Google Scholar

[6] Z. Zhang et al., "Biomimetic porous silicon oxycarbide ceramics with improved specific strength and efficient thermal insulation," J. Mater. Sci. Technol., vol. 168, p.185–193, Jan. 2024.

DOI: 10.1016/j.jmst.2023.06.006

Google Scholar

[7] E. Georgantzia, M. Gkantou, and G. S. Kamaris, "Aluminium alloys as structural material: A review of research," Eng. Struct., vol. 227, p.111372, Jan. 2021.

DOI: 10.1016/j.engstruct.2020.111372

Google Scholar

[8] S. Bagherifard, "Enhancing the Structural Performance of Lightweight Metals by Shot Peening," Adv. Eng. Mater., vol. 21, no. 7, p.1801140, Jul. 2019, doi:10.1002/ adem.201801140.

DOI: 10.1002/adem.201801140

Google Scholar

[9] M. Benedetti, M. Pedranz, V. Fontanari, C. Menapace, and M. Bandini, "Enhancing plain fatigue strength in aluminum alloys through shot peening: Experimental investigations and a strain energy density interpretation," Int. J. Fatigue, vol. 184, p.108299, Jul. 2024.

DOI: 10.1016/j.ijfatigue.2024.108299

Google Scholar

[10] S. Wu et al., "Unconventional structure evolution stabilizes the ultrahigh specific strength in a nanostructured Al–Mg–Li alloy," Mater. Sci. Eng. A, vol. 860, p.144282, Dec. 2022.

DOI: 10.1016/j.msea.2022.144282

Google Scholar

[11] M. Taghizadeh and Z. H. Zhu, "A comprehensive review on metal laser additive manufacturing in space: Modeling and perspectives," Acta Astronaut., vol. 222, p.403–421, Sep. 2024.

DOI: 10.1016/j.actaastro.2024.06.027

Google Scholar

[12] N. Qbau, N. D. Nam, N. T. Hien, and N. X. Ca, "Development of light weight high strength aluminum alloy for selective laser melting," J. Mater. Res. Technol., vol. 9, no. 6, p.14075–14081, Nov. 2020.

DOI: 10.1016/j.jmrt.2020.09.088

Google Scholar

[13] M. R. Ekici, E. Tabar, G. Hoşgör, E. Bulut, and A. Atasoy, "The effect of zinc, iron and manganese content on gamma shielding properties of magnesium-based alloys produced using the powder metallurgy," Nucl. Eng. Technol., p. S1738573324003553, Jul. 2024.

DOI: 10.1016/j.net.2024.07.039

Google Scholar

[14] R. Kumar, M. Mursaleen, and G. A. Harmain, "Influence of load ratio on fatigue life assessment of AZ31B magnesium alloy under different temperatures," Theor. Appl. Fract. Mech., vol. 133, p.104557, Oct. 2024.

DOI: 10.1016/j.tafmec.2024.104557

Google Scholar

[15] J. Hu, X. Nie, S. Fu, Z. Liu, and H. Gao, "Effects of pre-compression modes on mechanical properties and fatigue behaviors of rolled ZK60 magnesium alloy," Int. J. Fatigue, vol. 183, p.108235, Jun. 2024.

DOI: 10.1016/j.ijfatigue.2024.108235

Google Scholar

[16] L. Xu et al., "High specific strength MWCNTs/Mg-14Li-1Al composite prepared by electrophoretic deposition, friction stir processing and cold rolling," Trans. Nonferrous Met. Soc. China, vol. 32, no. 12, p.3914–3925, Dec. 2022.

DOI: 10.1016/S1003-6326(22)66067-9

Google Scholar

[17] M. Najafizadeh et al., "Classification and applications of titanium and its alloys: a review," J. Alloys Compd. Commun., p.100019, Aug. 2024.

DOI: 10.1016/j.jacomc.2024.100019

Google Scholar

[18] Z. Zhang, M. Yang, and G. He, "Effect of TiN monolithic and Ti/TiN multilayer coating on the fatigue behavior of titanium alloy under tension-tension," J. Mater. Res. Technol., vol. 31, p.3675–3689, Jul. 2024.

DOI: 10.1016/j.jmrt.2024.07.105

Google Scholar

[19] T. Li, H. Wu, D. An, J. Chen, X. Li, and J. Chen, "By introducing heterogeneous interfaces: Improved fatigue crack growth resistance of a metastable β titanium alloy," Scr. Mater., vol. 220, p.114921, Nov. 2022.

DOI: 10.1016/j.scriptamat.2022.114921

Google Scholar

[20] N. Thiyaneshwaran, C. P. Selvan, A. Lakshmikanthan, K. Sivaprasad, and B. Ravisankar, "Comparison based on specific strength and density of in-situ Ti/Al and Ti/Ni metal intermetallic laminates," J. Mater. Res. Technol., vol. 14, p.1126–1136, Sep. 2021.

DOI: 10.1016/j.jmrt.2021.06.102

Google Scholar

[21] Z. Zhu, T. Liu, M. Song, Z. Chen, S. Zhang, and C. Dong, "Design of Ti−7Al−2V alloy with high specific strength by using cluster formula," Trans. Nonferrous Met. Soc. China, vol. 33, no. 11, p.3364–3375, Nov. 2023.

DOI: 10.1016/S1003-6326(23)66339-3

Google Scholar

[22] Z. Zhu, T. Liu, C. Dong, D. Dong, S. Zhang, and Q. Wang, "Achieving high-temperature strength and plasticity in near-α Ti-7Al-3Zr-2V alloy using cluster formula design," J. Mater. Res. Technol., vol. 18, p.2582–2592, May 2022.

DOI: 10.1016/j.jmrt.2022.03.158

Google Scholar

[23] T. DebRoy et al., "Additive manufacturing of metallic components – Process, structure and properties," Prog. Mater. Sci., vol. 92, p.112–224, Mar. 2018.

DOI: 10.1016/j.pmatsci.2017.10.001

Google Scholar

[24] F. Zhang, Q. Mao, C. Mei, X. Li, and Z. Hu, "Dome Combustion Hot Blast Stove for Huge Blast Furnace," J. Iron Steel Res. Int., vol. 19, no. 9, p.1–7, Sep. 2012.

DOI: 10.1016/S1006-706X(13)60001-1

Google Scholar

[25] Y. Zhu, J. Li, X. Tian, H. Wang, and D. Liu, "Microstructure and mechanical properties of hybrid fabricated Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy by laser additive manufacturing," Mater. Sci. Eng. A, vol. 607, p.427–434, Jun. 2014.

DOI: 10.1016/j.msea.2014.04.019

Google Scholar

[26] Y. Zhu, X. Tian, J. Li, and H. Wang, "The anisotropy of laser melting deposition additive manufacturing Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy," Mater. Des., vol. 67, p.538–542, Feb. 2015.

DOI: 10.1016/j.matdes.2014.11.001

Google Scholar

[27] Y. Y. Li, S. Y. Ma, C. M. Liu, and M. Zhang, "Microstructure and Mechanical Properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy Fabricated by Arc Additive Manufacturing with Post Heat Treatment," Key Eng. Mater., vol. 789, p.161–169, Nov. 2018, doi: 10.4028/ www.scientific.net/KEM.789.161.

DOI: 10.4028/www.scientific.net/kem.789.161

Google Scholar

[28] Q. Zhang, J. Chen, Z. Zhao, H. Tan, X. Lin, and W. Huang, "Microstructure and anisotropic tensile behavior of laser additive manufactured TC21 titanium alloy," Mater. Sci. Eng. A, vol. 673, p.204–212, Sep. 2016.

DOI: 10.1016/j.msea.2016.07.040

Google Scholar

[29] Y. Zhu, B. Chen, H. Tang, X. Cheng, H. Wang, and J. Li, "Influence of heat treatments on microstructure and mechanical properties of laser additive manufacturing Ti-5Al-2Sn-2Zr-4Mo-4Cr titanium alloy," Trans. Nonferrous Met. Soc. China, vol. 28, no. 1, p.36–46, Jan. 2018.

DOI: 10.1016/S1003-6326(18)64636-9

Google Scholar

[30] "Carbon fiber mesh," shenghetech.com. Accessed: Jul. 31, 2024. [Online]. Available: https://www.shenghetech.com/products/carbon-fiber-mesh

Google Scholar

[31] D. Zorko, J. Tavčar, M. Bizjak, R. Šturm, and Z. Bergant, "High cycle fatigue behaviour of autoclave-cured woven carbon fibre-reinforced polymer composite gears," Polym. Test., vol. 102, p.107339, Oct. 2021.

DOI: 10.1016/j.polymertesting.2021.107339

Google Scholar

[32] "Enhancing specific strength and stiffness of phenolic microsphere syntactic foams through carbon fiber reinforcement - Huang - 2010 - Polymer Composites - Wiley Online Library." Accessed: Aug. 02, 2024. [Online]. Available: https://4spepublications.onlinelibrary. wiley.com/doi/abs/

DOI: 10.1002/pc.20795

Google Scholar

[33] Z. Lin et al., "Piezoelectric Response and Cycling Fatigue Resistance of Low-Temperature Sintered PZT-Based Ceramics," Materials, vol. 16, no. 4, p.1679, Feb. 2023.

DOI: 10.3390/ma16041679

Google Scholar

[34] A. Shearer, M. Montazerian, and J. C. Mauro, "Modern definition of bioactive glasses and glass-ceramics," J. Non-Cryst. Solids, vol. 608, p.122228, May 2023.

DOI: 10.1016/j.jnoncrysol.2023.122228

Google Scholar

[35] Z. Lin et al., "Piezoelectric Response and Cycling Fatigue Resistance of Low-Temperature Sintered PZT-Based Ceramics," Materials, vol. 16, no. 4, Art. no. 4, Feb. 2023.

DOI: 10.3390/ma16041679

Google Scholar

[36] S. Matsuda, "Theoretical approach to determine dynamic fatigue strength characteristics of ceramics under variable loading rates on the basis of SCG concept," Int. J. Fract., vol. 215, no. 1–2, p.175–182, Jan. 2019.

DOI: 10.1007/s10704-018-00337-7

Google Scholar

[37] S. Dhanasekar et al., "A Comprehensive Study of Ceramic Matrix Composites for Space Applications," Adv. Mater. Sci. Eng., vol. 2022, p.1–9, Sep. 2022.

DOI: 10.1155/2022/6160591

Google Scholar