[1]
Global Warming of 1.5 oC, (2022). https://www.ipcc.ch/sr15/ (accessed July 28, 2023).
Google Scholar
[2]
L. Barelli, G. Bidini, F. Gallorini, S. Servilli, Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review, Energy 33 (2008) 554–570.
DOI: 10.1016/j.energy.2007.10.018
Google Scholar
[3]
W. Zhao, T. Zhang, Y. Wang, J. Qiao, Z. Wang, Corrosion Failure Mechanism of Associated Gas Transmission Pipeline, Materials 11 (2018) 1935.
DOI: 10.3390/ma11101935
Google Scholar
[4]
L.M. Robeson, The upper bound revisited, J Memb Sci 320 (2008) 390–400.
DOI: 10.1016/j.memsci.2008.04.030
Google Scholar
[5]
D.R. Poudel, G.G. Khatri, G.C. Kaphle, Hydrogen Fuel: A Global Concern, Policies, Future & Its Overall Impact on Prosperous Nepal, 2023.
DOI: 10.3126/lecj.v6i1.66265
Google Scholar
[6]
T. Hashimoto, T. Asada, S. Ogoshi, Y. Hoshimoto, Main group catalysis for H 2 purification based on liquid organic hydrogen carriers, 2022. https://www.science.org.
DOI: 10.26434/chemrxiv-2022-pgbgd
Google Scholar
[7]
D.S. Sholl, R.P. Lively, Seven chemical separations to change the world, Nature 2016 532:7600 532 (2016) 435–437.
DOI: 10.1038/532435a
Google Scholar
[8]
M. Freemantle, Membranes for gas separation, Chemical & Engineering News Archive 83 (2005) 49–57.
Google Scholar
[9]
N. Prasetya, N.F. Himma, P.D. Sutrisna, I.G. Wenten, B.P. Ladewig, A review on emerging organic-containing microporous material membranes for carbon capture and separation, Chemical Engineering Journal 391 (2020) 123575.
DOI: 10.1016/j.cej.2019.123575
Google Scholar
[10]
P. Krokidas, S. Moncho, E.N. Brothers, M. Castier, H.-K. Jeong, I.G. Economou, On the Efficient Separation of Gas Mixtures with the Mixed-Linker Zeolitic-Imidazolate Framework-7-8, ACS Appl Mater Interfaces 10 (2018) 39631–39644. https://doi.org/10.1021/ acsami.8b12605.
DOI: 10.1021/acsami.8b12605
Google Scholar
[11]
M. Shah, M.C. McCarthy, S. Sachdeva, A.K. Lee, H.-K. Jeong, Current Status of Metal–Organic Framework Membranes for Gas Separations: Promises and Challenges, Ind Eng Chem Res 51 (2012) 2179–2199.
DOI: 10.1021/ie202038m
Google Scholar
[12]
I.S. Kucherenko, O.O. Soldatkin, S.V. Dzyadevych, A.P. Soldatkin, Application of zeolites and zeolitic imidazolate frameworks in the biosensor development, Biomaterials Advances 143 (2022) 213180.
DOI: 10.1016/j.bioadv.2022.213180
Google Scholar
[13]
B. Yue, S. Liu, Y. Chai, G. Wu, N. Guan, L. Li, Zeolites for separation: Fundamental and application, Journal of Energy Chemistry 71 (2022) 288–303.
DOI: 10.1016/j.jechem.2022.03.035
Google Scholar
[14]
K. Adil, Y. Belmabkhout, R.S. Pillai, A. Cadiau, P.M. Bhatt, A.H. Assen, G. Maurin, M. Eddaoudi, Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship, Chem Soc Rev 46 (2017) 3402–3430.
DOI: 10.1039/C7CS00153C
Google Scholar
[15]
P. Krokidas, S. Moncho, E.N. Brothers, M. Castier, I.G. Economou, Tailoring the gas separation efficiency of metal organic framework ZIF-8 through metal substitution: a computational study, Physical Chemistry Chemical Physics 20 (2018) 4879–4892.
DOI: 10.1039/C7CP08456K
Google Scholar
[16]
S. Gilassi, S.M. Taghavi, D. Rodrigue, S. Kaliaguine, Techno-economic evaluation of membrane and enzymatic-absorption processes for CO2 capture from flue-gas, Sep Purif Technol 248 (2020) 116941.
DOI: 10.1016/j.seppur.2020.116941
Google Scholar
[17]
R.-B. Lin, S. Xiang, W. Zhou, B. Chen, Microporous Metal-Organic Framework Materials for Gas Separation, Chem 6 (2020) 337–363.
DOI: 10.1016/j.chempr.2019.10.012
Google Scholar
[18]
A. Tchinsa, M.F. Hossain, T. Wang, Y. Zhou, Removal of organic pollutants from aqueous solution using metal organic frameworks (MOFs)-based adsorbents: A review, Chemosphere 284 (2021) 131393.
DOI: 10.1016/j.chemosphere.2021.131393
Google Scholar
[19]
Z. Lai, Development of ZIF-8 membranes: opportunities and challenges for commercial applications, Curr Opin Chem Eng 20 (2018) 78–85.
DOI: 10.1016/j.coche.2018.03.002
Google Scholar
[20]
J.O. Ighalo, S. Rangabhashiyam, C.A. Adeyanju, S. Ogunniyi, A.G. Adeniyi, C.A. Igwegbe, Zeolitic Imidazolate Frameworks (ZIFs) for aqueous phase adsorption – A review, Journal of Industrial and Engineering Chemistry 105 (2022) 34–48.
DOI: 10.1016/j.jiec.2021.09.029
Google Scholar
[21]
H.T. Kwon, H.-K. Jeong, Improving propylene/propane separation performance of Zeolitic-Imidazolate framework ZIF-8 Membranes, Chem Eng Sci 124 (2015) 20–26.
DOI: 10.1016/j.ces.2014.06.021
Google Scholar
[22]
E. López-Maya, C. Montoro, L.M. Rodriguez-Albelo, C.R. Maldonado, Adsorption Processes on Zeolites and Metal-Organic Frameworks for Industrial and Environmental Applications, in: Zeolites and Metal-Organic Frameworks, Amsterdam University Press, 2018: p.175–208.
DOI: 10.2307/j.ctvcmxprm.10
Google Scholar
[23]
D.J. Babu, G. He, L.F. Villalobos, K.V. Agrawal, Crystal Engineering of Metal–Organic Framework Thin Films for Gas Separations, ACS Sustain Chem Eng 7 (2019) 49–69.
DOI: 10.1021/acssuschemeng.8b05409
Google Scholar
[24]
F. Hillman, J.M. Zimmerman, S.-M. Paek, M.R.A. Hamid, W.T. Lim, H.-K. Jeong, Rapid microwave-assisted synthesis of hybrid zeolitic–imidazolate frameworks with mixed metals and mixed linkers, J Mater Chem A Mater 5 (2017) 6090–6099.
DOI: 10.1039/C6TA11170J
Google Scholar
[25]
M.R. Abdul Hamid, T.C. Shean Yaw, M.Z. Mohd Tohir, W.A. Wan Abdul Karim Ghani, P.D. Sutrisna, H.-K. Jeong, Zeolitic imidazolate framework membranes for gas separations: Current state-of-the-art, challenges, and opportunities, Journal of Industrial and Engineering Chemistry 98 (2021) 17–41.
DOI: 10.1016/j.jiec.2021.03.047
Google Scholar
[26]
J. Jiang, Molecular simulations in metal–organic frameworks for diverse potential applications, Mol Simul 40 (2014) 516–536.
DOI: 10.1080/08927022.2013.832247
Google Scholar
[27]
K.C. Jayachandrababu, Y. Chiang, F. Zhang, A. Korde, R. Han, S. Bhattacharyya, D. S. Sholl, S. Nair, Synthesizing New Hybrid Zeolitic Imidazolate Frameworks by Controlled Demolition and Reconstruction, ACS Mater Lett 1 (2019) 447–451.
DOI: 10.1021/acsmaterialslett.9b00211
Google Scholar
[28]
C. Zhang, W.J. Koros, Zeolitic Imidazolate Framework- Enabled Membranes: Challenges and Opportunities, J Phys Chem Lett 6 (2015) 3841–3849. https://doi.org/10.1021/ acs.jpclett.5b01602.
DOI: 10.1021/acs.jpclett.5b01602
Google Scholar
[29]
P. Krokidas, S. Moncho, E. N. Brothers, I. G. Economou, Defining New Limits in Gas Separations Using Modified ZIF Systems, ACS Applied Materials & Interfaces 12 (2020) 20536–20547.
DOI: 10.1021/acsami.0c02886
Google Scholar
[30]
T. Cornell, G. Hutchison, Auto Optimize Tool - Avogadro, (2022). https://avogadro.cc/docs/tools/auto-optimize-tool/ (accessed July 28, 2023).
Google Scholar
[31]
L. Hertäg, H. Bux, J. Caro, C. Chmelik, T. Remsungnen, M. Knauth, S. Fritzsche, Diffusion of CH4 and H2 in ZIF-8, J Memb Sci 377 (2011) 36–41.
DOI: 10.1016/j.memsci.2011.01.019
Google Scholar
[32]
P. Krokidas, S. Moncho, E.N. Brothers, M. Castier, H.K. Jeong, I.G. Economou, On the Efficient Separation of Gas Mixtures with the Mixed-Linker Zeolitic-Imidazolate Framework-7-8, ACS Appl Mater Interfaces 10 (2018) 39631–39644.
DOI: 10.1021/acsami.8b12605
Google Scholar
[33]
J.J. Potoff, J.I. Siepmann, Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen, AIChE Journal 47 (2001) 1676–1682.
DOI: 10.1002/AIC.690470719
Google Scholar
[34]
B. Zheng, M. Sant, P. Demontis, G.B. Suffritti, Force field for molecular dynamics computations in flexible ZIF-8 framework, Journal of Physical Chemistry C 116 (2012) 933–938.
DOI: 10.1021/jp209463a
Google Scholar
[35]
X. Wu, J. Huang, W. Cai, M. Jaroniec, Force field for ZIF-8 flexible frameworks: Atomistic simulation of adsorption, diffusion of pure gases as CH4, H2, CO 2 and N2, RSC Adv 4 (2014) 16503–16511.
DOI: 10.1039/c4ra00664j
Google Scholar
[36]
J. Yang, Y. Ren, A.M. Tian, H. Sun, COMPASS Force Field for 14 Inorganic Molecules, He, Ne, Ar, Kr, Xe, H2, O2, N2, NO, CO, CO2, NO2, CS2, and SO2, in Liquid Phases, Journal of Physical Chemistry B 104 (2000) 4951–4957.
DOI: 10.1021/jp992913p
Google Scholar
[37]
A. Hatami, I. Salahshoori, N. Rashidi, D. Nasirian, The effect of ZIF-90 particle in Pebax/Psf composite membrane on the transport properties of CO2, CH4 and N2 gases by Molecular Dynamics Simulation method, Chin J Chem Eng 28 (2020) 2267–2284.
DOI: 10.1016/j.cjche.2019.12.011
Google Scholar
[38]
P. Krokidas, M. Castier, I.G. Economou, Computational Study of ZIF-8 and ZIF-67 Performance for Separation of Gas Mixtures, The Journal of Physical Chemistry C 121 (2017) 17999–18011.
DOI: 10.1021/acs.jpcc.7b05700
Google Scholar
[39]
Q. Yang, D. Liu, C. Zhong, J.-R. Li, Development of Computational Methodologies for Metal–Organic Frameworks and Their Application in Gas Separations, Chem Rev 113 (2013) 8261–8323.
DOI: 10.1021/cr400005f
Google Scholar
[40]
B. Bayati, A. Ghorbani, K. Ghasemzadeh, A. Iulianelli, A. Basile, Study on the separation of H2 from CO2 using a ZIF-8 membrane by molecular simulation and maxwell-stefan model, Molecules 24 (2019).
DOI: 10.3390/molecules24234350
Google Scholar
[41]
A.-K. Pusch, T. Splith, L. Moschkowitz, S. Karmakar, R. Biniwale, M. Sant, G.B. Suffritti, P. Demontis, J. Cravillon, E. Pantatosaki, F. Stallmach, NMR studies of carbon dioxide and methane self-diffusion in ZIF-8 at elevated gas pressures, Adsorption 18 (2012) 359–366.
DOI: 10.1007/s10450-012-9414-2
Google Scholar
[42]
A. Battisti, S. Taioli, G. Garberoglio, Zeolitic imidazolate frameworks for separation of binary mixtures of CO2, CH4, N2 and H2: A computer simulation investigation, Microporous and Mesoporous Materials 143 (2011) 46–53.
DOI: 10.1016/j.micromeso.2011.01.029
Google Scholar
[43]
Z. Keyvanloo, A. Nakhaei Pour, F. Moosavi, Molecular simulation of adsorption and diffusion of H2 /CO2 /CO /MeOH /EtOH mixture into the zeolitic imidazolate framework ZIF-8, Microporous and Mesoporous Materials 333 (2022) 111723.
DOI: 10.1016/J.MICROMESO.2022.111723
Google Scholar
[44]
L.S. Lai, Y.F. Yeong, K.K. Lau, M.S. Azmi, T.L. Chew, Zeolitic Imidazolate Framework-8 Membrane for H2/CO2 Separation: Experimental and Modeling, in: IOP Conf Ser Mater Sci Eng, Institute of Physics Publishing, 2018.
DOI: 10.1088/1757-899X/318/1/012002
Google Scholar
[45]
E. Pantatosaki, G. Megariotis, A.K. Pusch, C. Chmelik, F. Stallmach, G.K. Papadopoulos, On the impact of sorbent mobility on the sorbed phase equilibria and dynamics: A study of methane and carbon dioxide within the zeolite imidazolate framework-8, Journal of Physical Chemistry C 116 (2012) 201–207.
DOI: 10.1021/jp207771s
Google Scholar
[46]
Z. Keyvanloo, A.N. Pour, F. Moosavi, Adsorption and Diffusion of The H2/CO2 /CO /MeOH /EtOH Mixture into the ZIF-7 Using Molecular simulation, Res Sq (2021).
DOI: 10.21203/rs.3.rs-907251/v1
Google Scholar
[47]
R.J. Verploegh, S. Nair, D.S. Sholl, Temperature and Loading-Dependent Diffusion of Light Hydrocarbons in ZIF-8 as Predicted Through Fully Flexible Molecular Simulations, J Am Chem Soc 137 (2015) 15760–15771.
DOI: 10.1021/jacs.5b08746
Google Scholar
[48]
B. Chen, Z. Yang, Y. Zhu, Y. Xia, Zeolitic imidazolate framework materials: Recent progress in synthesis and applications, J Mater Chem A Mater 2 (2014) 16811–16831.
DOI: 10.1039/c4ta02984d
Google Scholar
[49]
J. Mor, R.B. Nelliyil, S.K. Sharma, Fine-Tuning of the Pore Aperture and Framework Flexibility of Mixed-Metal (Zn/Co) Zeolitic Imidazolate Framework-8: An In Situ Positron Annihilation Lifetime Spectroscopy Study under CO2 Gas Pressure, Langmuir 39 (2023) 10056–10065. https://doi.org/10.1021/ACS.LANGMUIR.3C00996/SUPPL_ FILE/LA3C00996_SI_001.PDF.
DOI: 10.1021/acs.langmuir.3c00996
Google Scholar