On the Selectivity and Self-Diffusion of CO2 and H2 in Mixed-Layer Zeolitic-Imidazolate Frameworks

Article Preview

Abstract:

Zeolitic-imidazolate frameworks (ZIFs) have shown promise in gas separation through membranes. Nevertheless, the potential of mixed-layer ZIFs to be tailored for targeted gas separation remains largely unexplored. This study aims to fill this research gap through a Molecular Dynamics (MD) study by proposing two molecular models for mixed-layer ZIFs and evaluating their effectiveness in H2 and CO2 separation. MD simulations are conducted to validate and assess the diffusion properties of H2 and CO2 within the mixed-layered ZIF models. The results demonstrate that H2 has higher diffusivity than CO2 within the proposed ZIF models. Mixed-layer ZIF-8/ZIF-7 exhibits higher diffusion coefficients for both H2 (4.79 × 10-9 m²/s) and CO₂ (8.13 × 10-11 m²/s) compared to pure ZIF-8, attributed to increased pore flexibility from the ZIF-7 layer. However, this enhancement in diffusion comes at the cost of reduced selectivity due to broader pore size distribution. In contrast, mixed-layer ZIF-8(Zn)/ZIF-8(Co) demonstrates a substantial increase in H2 diffusion (5.17 × 10-9 m²/s) and an exceptional selectivity of 310.00 for H2 over CO2, owing to the altered framework flexibility from incorporating different metal ions. The study further explores the effect of different adsorbate molecular models, revealing that the H2_COMPASS and CO2_TRAPPE combination yields the highest H2/CO2 selectivity. Additionally, increased molecular loading enhances diffusion. These findings underscore the critical role of structural modifications and molecular model selection in optimizing ZIF-based materials for gas separation applications. The proposed models and simulation results offer a foundation for future studies and the development of efficient and sustainable gas capture technologies.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1153)

Pages:

123-135

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Global Warming of 1.5 oC, (2022). https://www.ipcc.ch/sr15/ (accessed July 28, 2023).

Google Scholar

[2] L. Barelli, G. Bidini, F. Gallorini, S. Servilli, Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review, Energy 33 (2008) 554–570.

DOI: 10.1016/j.energy.2007.10.018

Google Scholar

[3] W. Zhao, T. Zhang, Y. Wang, J. Qiao, Z. Wang, Corrosion Failure Mechanism of Associated Gas Transmission Pipeline, Materials 11 (2018) 1935.

DOI: 10.3390/ma11101935

Google Scholar

[4] L.M. Robeson, The upper bound revisited, J Memb Sci 320 (2008) 390–400.

DOI: 10.1016/j.memsci.2008.04.030

Google Scholar

[5] D.R. Poudel, G.G. Khatri, G.C. Kaphle, Hydrogen Fuel: A Global Concern, Policies, Future & Its Overall Impact on Prosperous Nepal, 2023.

DOI: 10.3126/lecj.v6i1.66265

Google Scholar

[6] T. Hashimoto, T. Asada, S. Ogoshi, Y. Hoshimoto, Main group catalysis for H 2 purification based on liquid organic hydrogen carriers, 2022. https://www.science.org.

DOI: 10.26434/chemrxiv-2022-pgbgd

Google Scholar

[7] D.S. Sholl, R.P. Lively, Seven chemical separations to change the world, Nature 2016 532:7600 532 (2016) 435–437.

DOI: 10.1038/532435a

Google Scholar

[8] M. Freemantle, Membranes for gas separation, Chemical & Engineering News Archive 83 (2005) 49–57.

Google Scholar

[9] N. Prasetya, N.F. Himma, P.D. Sutrisna, I.G. Wenten, B.P. Ladewig, A review on emerging organic-containing microporous material membranes for carbon capture and separation, Chemical Engineering Journal 391 (2020) 123575.

DOI: 10.1016/j.cej.2019.123575

Google Scholar

[10] P. Krokidas, S. Moncho, E.N. Brothers, M. Castier, H.-K. Jeong, I.G. Economou, On the Efficient Separation of Gas Mixtures with the Mixed-Linker Zeolitic-Imidazolate Framework-7-8, ACS Appl Mater Interfaces 10 (2018) 39631–39644. https://doi.org/10.1021/ acsami.8b12605.

DOI: 10.1021/acsami.8b12605

Google Scholar

[11] M. Shah, M.C. McCarthy, S. Sachdeva, A.K. Lee, H.-K. Jeong, Current Status of Metal–Organic Framework Membranes for Gas Separations: Promises and Challenges, Ind Eng Chem Res 51 (2012) 2179–2199.

DOI: 10.1021/ie202038m

Google Scholar

[12] I.S. Kucherenko, O.O. Soldatkin, S.V. Dzyadevych, A.P. Soldatkin, Application of zeolites and zeolitic imidazolate frameworks in the biosensor development, Biomaterials Advances 143 (2022) 213180.

DOI: 10.1016/j.bioadv.2022.213180

Google Scholar

[13] B. Yue, S. Liu, Y. Chai, G. Wu, N. Guan, L. Li, Zeolites for separation: Fundamental and application, Journal of Energy Chemistry 71 (2022) 288–303.

DOI: 10.1016/j.jechem.2022.03.035

Google Scholar

[14] K. Adil, Y. Belmabkhout, R.S. Pillai, A. Cadiau, P.M. Bhatt, A.H. Assen, G. Maurin, M. Eddaoudi, Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship, Chem Soc Rev 46 (2017) 3402–3430.

DOI: 10.1039/C7CS00153C

Google Scholar

[15] P. Krokidas, S. Moncho, E.N. Brothers, M. Castier, I.G. Economou, Tailoring the gas separation efficiency of metal organic framework ZIF-8 through metal substitution: a computational study, Physical Chemistry Chemical Physics 20 (2018) 4879–4892.

DOI: 10.1039/C7CP08456K

Google Scholar

[16] S. Gilassi, S.M. Taghavi, D. Rodrigue, S. Kaliaguine, Techno-economic evaluation of membrane and enzymatic-absorption processes for CO2 capture from flue-gas, Sep Purif Technol 248 (2020) 116941.

DOI: 10.1016/j.seppur.2020.116941

Google Scholar

[17] R.-B. Lin, S. Xiang, W. Zhou, B. Chen, Microporous Metal-Organic Framework Materials for Gas Separation, Chem 6 (2020) 337–363.

DOI: 10.1016/j.chempr.2019.10.012

Google Scholar

[18] A. Tchinsa, M.F. Hossain, T. Wang, Y. Zhou, Removal of organic pollutants from aqueous solution using metal organic frameworks (MOFs)-based adsorbents: A review, Chemosphere 284 (2021) 131393.

DOI: 10.1016/j.chemosphere.2021.131393

Google Scholar

[19] Z. Lai, Development of ZIF-8 membranes: opportunities and challenges for commercial applications, Curr Opin Chem Eng 20 (2018) 78–85.

DOI: 10.1016/j.coche.2018.03.002

Google Scholar

[20] J.O. Ighalo, S. Rangabhashiyam, C.A. Adeyanju, S. Ogunniyi, A.G. Adeniyi, C.A. Igwegbe, Zeolitic Imidazolate Frameworks (ZIFs) for aqueous phase adsorption – A review, Journal of Industrial and Engineering Chemistry 105 (2022) 34–48.

DOI: 10.1016/j.jiec.2021.09.029

Google Scholar

[21] H.T. Kwon, H.-K. Jeong, Improving propylene/propane separation performance of Zeolitic-Imidazolate framework ZIF-8 Membranes, Chem Eng Sci 124 (2015) 20–26.

DOI: 10.1016/j.ces.2014.06.021

Google Scholar

[22] E. López-Maya, C. Montoro, L.M. Rodriguez-Albelo, C.R. Maldonado, Adsorption Processes on Zeolites and Metal-Organic Frameworks for Industrial and Environmental Applications, in: Zeolites and Metal-Organic Frameworks, Amsterdam University Press, 2018: p.175–208.

DOI: 10.2307/j.ctvcmxprm.10

Google Scholar

[23] D.J. Babu, G. He, L.F. Villalobos, K.V. Agrawal, Crystal Engineering of Metal–Organic Framework Thin Films for Gas Separations, ACS Sustain Chem Eng 7 (2019) 49–69.

DOI: 10.1021/acssuschemeng.8b05409

Google Scholar

[24] F. Hillman, J.M. Zimmerman, S.-M. Paek, M.R.A. Hamid, W.T. Lim, H.-K. Jeong, Rapid microwave-assisted synthesis of hybrid zeolitic–imidazolate frameworks with mixed metals and mixed linkers, J Mater Chem A Mater 5 (2017) 6090–6099.

DOI: 10.1039/C6TA11170J

Google Scholar

[25] M.R. Abdul Hamid, T.C. Shean Yaw, M.Z. Mohd Tohir, W.A. Wan Abdul Karim Ghani, P.D. Sutrisna, H.-K. Jeong, Zeolitic imidazolate framework membranes for gas separations: Current state-of-the-art, challenges, and opportunities, Journal of Industrial and Engineering Chemistry 98 (2021) 17–41.

DOI: 10.1016/j.jiec.2021.03.047

Google Scholar

[26] J. Jiang, Molecular simulations in metal–organic frameworks for diverse potential applications, Mol Simul 40 (2014) 516–536.

DOI: 10.1080/08927022.2013.832247

Google Scholar

[27] K.C. Jayachandrababu, Y. Chiang, F. Zhang, A. Korde, R. Han, S. Bhattacharyya, D. S. Sholl, S. Nair, Synthesizing New Hybrid Zeolitic Imidazolate Frameworks by Controlled Demolition and Reconstruction, ACS Mater Lett 1 (2019) 447–451.

DOI: 10.1021/acsmaterialslett.9b00211

Google Scholar

[28] C. Zhang, W.J. Koros, Zeolitic Imidazolate Framework- Enabled Membranes: Challenges and Opportunities, J Phys Chem Lett 6 (2015) 3841–3849. https://doi.org/10.1021/ acs.jpclett.5b01602.

DOI: 10.1021/acs.jpclett.5b01602

Google Scholar

[29] P. Krokidas, S. Moncho, E. N. Brothers, I. G. Economou, Defining New Limits in Gas Separations Using Modified ZIF Systems, ACS Applied Materials & Interfaces 12 (2020) 20536–20547.

DOI: 10.1021/acsami.0c02886

Google Scholar

[30] T. Cornell, G. Hutchison, Auto Optimize Tool - Avogadro, (2022). https://avogadro.cc/docs/tools/auto-optimize-tool/ (accessed July 28, 2023).

Google Scholar

[31] L. Hertäg, H. Bux, J. Caro, C. Chmelik, T. Remsungnen, M. Knauth, S. Fritzsche, Diffusion of CH4 and H2 in ZIF-8, J Memb Sci 377 (2011) 36–41.

DOI: 10.1016/j.memsci.2011.01.019

Google Scholar

[32] P. Krokidas, S. Moncho, E.N. Brothers, M. Castier, H.K. Jeong, I.G. Economou, On the Efficient Separation of Gas Mixtures with the Mixed-Linker Zeolitic-Imidazolate Framework-7-8, ACS Appl Mater Interfaces 10 (2018) 39631–39644.

DOI: 10.1021/acsami.8b12605

Google Scholar

[33] J.J. Potoff, J.I. Siepmann, Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen, AIChE Journal 47 (2001) 1676–1682.

DOI: 10.1002/AIC.690470719

Google Scholar

[34] B. Zheng, M. Sant, P. Demontis, G.B. Suffritti, Force field for molecular dynamics computations in flexible ZIF-8 framework, Journal of Physical Chemistry C 116 (2012) 933–938.

DOI: 10.1021/jp209463a

Google Scholar

[35] X. Wu, J. Huang, W. Cai, M. Jaroniec, Force field for ZIF-8 flexible frameworks: Atomistic simulation of adsorption, diffusion of pure gases as CH4, H2, CO 2 and N2, RSC Adv 4 (2014) 16503–16511.

DOI: 10.1039/c4ra00664j

Google Scholar

[36] J. Yang, Y. Ren, A.M. Tian, H. Sun, COMPASS Force Field for 14 Inorganic Molecules, He, Ne, Ar, Kr, Xe, H2, O2, N2, NO, CO, CO2, NO2, CS2, and SO2, in Liquid Phases, Journal of Physical Chemistry B 104 (2000) 4951–4957.

DOI: 10.1021/jp992913p

Google Scholar

[37] A. Hatami, I. Salahshoori, N. Rashidi, D. Nasirian, The effect of ZIF-90 particle in Pebax/Psf composite membrane on the transport properties of CO2, CH4 and N2 gases by Molecular Dynamics Simulation method, Chin J Chem Eng 28 (2020) 2267–2284.

DOI: 10.1016/j.cjche.2019.12.011

Google Scholar

[38] P. Krokidas, M. Castier, I.G. Economou, Computational Study of ZIF-8 and ZIF-67 Performance for Separation of Gas Mixtures, The Journal of Physical Chemistry C 121 (2017) 17999–18011.

DOI: 10.1021/acs.jpcc.7b05700

Google Scholar

[39] Q. Yang, D. Liu, C. Zhong, J.-R. Li, Development of Computational Methodologies for Metal–Organic Frameworks and Their Application in Gas Separations, Chem Rev 113 (2013) 8261–8323.

DOI: 10.1021/cr400005f

Google Scholar

[40] B. Bayati, A. Ghorbani, K. Ghasemzadeh, A. Iulianelli, A. Basile, Study on the separation of H2 from CO2 using a ZIF-8 membrane by molecular simulation and maxwell-stefan model, Molecules 24 (2019).

DOI: 10.3390/molecules24234350

Google Scholar

[41] A.-K. Pusch, T. Splith, L. Moschkowitz, S. Karmakar, R. Biniwale, M. Sant, G.B. Suffritti, P. Demontis, J. Cravillon, E. Pantatosaki, F. Stallmach, NMR studies of carbon dioxide and methane self-diffusion in ZIF-8 at elevated gas pressures, Adsorption 18 (2012) 359–366.

DOI: 10.1007/s10450-012-9414-2

Google Scholar

[42] A. Battisti, S. Taioli, G. Garberoglio, Zeolitic imidazolate frameworks for separation of binary mixtures of CO2, CH4, N2 and H2: A computer simulation investigation, Microporous and Mesoporous Materials 143 (2011) 46–53.

DOI: 10.1016/j.micromeso.2011.01.029

Google Scholar

[43] Z. Keyvanloo, A. Nakhaei Pour, F. Moosavi, Molecular simulation of adsorption and diffusion of H2 /CO2 /CO /MeOH /EtOH mixture into the zeolitic imidazolate framework ZIF-8, Microporous and Mesoporous Materials 333 (2022) 111723.

DOI: 10.1016/J.MICROMESO.2022.111723

Google Scholar

[44] L.S. Lai, Y.F. Yeong, K.K. Lau, M.S. Azmi, T.L. Chew, Zeolitic Imidazolate Framework-8 Membrane for H2/CO2 Separation: Experimental and Modeling, in: IOP Conf Ser Mater Sci Eng, Institute of Physics Publishing, 2018.

DOI: 10.1088/1757-899X/318/1/012002

Google Scholar

[45] E. Pantatosaki, G. Megariotis, A.K. Pusch, C. Chmelik, F. Stallmach, G.K. Papadopoulos, On the impact of sorbent mobility on the sorbed phase equilibria and dynamics: A study of methane and carbon dioxide within the zeolite imidazolate framework-8, Journal of Physical Chemistry C 116 (2012) 201–207.

DOI: 10.1021/jp207771s

Google Scholar

[46] Z. Keyvanloo, A.N. Pour, F. Moosavi, Adsorption and Diffusion of The H2/CO2 /CO /MeOH /EtOH Mixture into the ZIF-7 Using Molecular simulation, Res Sq (2021).

DOI: 10.21203/rs.3.rs-907251/v1

Google Scholar

[47] R.J. Verploegh, S. Nair, D.S. Sholl, Temperature and Loading-Dependent Diffusion of Light Hydrocarbons in ZIF-8 as Predicted Through Fully Flexible Molecular Simulations, J Am Chem Soc 137 (2015) 15760–15771.

DOI: 10.1021/jacs.5b08746

Google Scholar

[48] B. Chen, Z. Yang, Y. Zhu, Y. Xia, Zeolitic imidazolate framework materials: Recent progress in synthesis and applications, J Mater Chem A Mater 2 (2014) 16811–16831.

DOI: 10.1039/c4ta02984d

Google Scholar

[49] J. Mor, R.B. Nelliyil, S.K. Sharma, Fine-Tuning of the Pore Aperture and Framework Flexibility of Mixed-Metal (Zn/Co) Zeolitic Imidazolate Framework-8: An In Situ Positron Annihilation Lifetime Spectroscopy Study under CO2 Gas Pressure, Langmuir 39 (2023) 10056–10065. https://doi.org/10.1021/ACS.LANGMUIR.3C00996/SUPPL_ FILE/LA3C00996_SI_001.PDF.

DOI: 10.1021/acs.langmuir.3c00996

Google Scholar