[1]
K.F.H. YEO, C. Li, H. Zhang, J. Chen, W. Wang, Y. Dong, Arsenic Removal from Contaminated Water Using Natural Adsorbents: A Review. Coatings, 11(11) (2021), 1407.
DOI: 10.3390/coatings11111407
Google Scholar
[2]
M.O. Asare, J. O. Afriyie, Ancient mining and metallurgy as the origin of Cu, Ag, Pb, Hg, and Zn contamination in soils: A review. Water, Air, & Soil Pollution, 232(6) (2021), 240.
DOI: 10.1007/s11270-021-05166-4
Google Scholar
[3]
P.V. Daniel, M. Kamthan, S. Thakur, P. Mondal,. Molecular pathways dysregulated by Pb2+ exposure prompts pancreatic beta-cell dysfunction. Toxicology research, 11(1) (2022),206-214.
DOI: 10.1093/toxres/tfab121
Google Scholar
[4]
M. Nujić and M. Habuda-Stanić, Toxic Metal Ions in Drinking Water and Effective Removal Using Graphene Oxide Nanocomposite, A New Gener. Mater. Graphene Appl. Water Technol. 1 (2019) 373–395.
DOI: 10.1007/978-3-319-75484-0_15
Google Scholar
[5]
Z. F. Xue, W. C. Cheng, L. Wang, Y. X. Xie, P. Qin, C. Shi, Immobilizing lead in aqueous solution and loess soil using microbially induced carbonate/phosphate precipitation (MICP/MIPP) under harsh pH environments. Journal of Hazardous Materials, 480 (2022), 135884.
DOI: 10.1016/j.jhazmat.2024.135884
Google Scholar
[6]
H. Xiang, X. Min, C. J. Tang, and F. Zhao, Recent advances in membrane filtration for heavy metal removal from wastewater: A mini review, J. Water Process Eng. 49 (2022) 103023.
DOI: 10.1016/j.jwpe.2022.103023
Google Scholar
[7]
I. R. Chowdhury, S. Chowdhury, M. A. J. Mazumder, A. Al-Ahmed, Removal of lead ions (Pb2+) from water and wastewater: a review on the low-cost adsorbents. Applied Water Science, 12(8) (2022), 185.
DOI: 10.1007/s13201-022-01703-6
Google Scholar
[8]
R. Panek, M. Medykowska, M. Wiśniewska, K. Szewczuk-Karpisz, K. Jędruchniewicz, M. Franus, Simultaneous removal of Pb2+ and Zn2+ heavy metals using fly ash Na-X zeolite and its carbon Na-X (C) composite. Materials, 14(11) (2021), 2832.
DOI: 10.3390/ma14112832
Google Scholar
[9]
A. Malik and A. Aleem, Incidence of metal and antibiotic resistance in Pseudomonas spp. from the river water, agricultural soil irrigated with wastewater and groundwater, Environ. Monit. Assess. 178 (2021) 293–308.
DOI: 10.1007/s10661-010-1690-2
Google Scholar
[10]
G. Editors et al., Synthesis of Ferromagnetic Nanocomposites from Nanocrystalline Cellulose and Characterization as an Adsorbent to Remove Lead in the Water, Chem. Eng. Trans. 97 (2022) 19–24.
Google Scholar
[11]
B. Tran Pham Ngoc et al., Synthesis of Ferromagnetic Nanocomposites from Nanocrystalline Cellulose and Characterization as an Adsorbent to Remove Lead in the Water, Chem. Eng. Trans. 97 (2022) 19–24.
Google Scholar
[12]
J. A. Cruz Valdez, A. Aviles Martinez, J. Vallejo Montesinos, E. Perez, R. Patino-Herrera, , Maximizing Propylene Separation from Propane by Extractive Distillation with Aqueous N‐Methyl‐2‐pyrrolidone as Separating Agent. Chemical Engineering & Technology, 44(9) (2021), 1726-1736.
DOI: 10.1002/ceat.202100203
Google Scholar
[13]
M. Musah, Y. Azeh, J. T. Mathew, M. T. Umar, Z. Abdulhamid, A. I. Muhammad, Adsorption kinetics and isotherm models: a review. CaJoST, 4(1) (2022), 20-26.
DOI: 10.4314/cajost.v4i1.3
Google Scholar
[14]
T. S. Khayyun, and A. H. Mseer , Comparison of the experimental results with the Langmuir and Freundlich models for copper removal on limestone adsorbent. Applied Water Science, 9(8) (2019), 170.
DOI: 10.1007/s13201-019-1061-2
Google Scholar
[15]
M. Mabuza, K. Premlall, M. O. Daramola. Modelling and thermodynamic properties of pure CO2 and flue gas sorption data on South African coals using Langmuir, Freundlich, Temkin, and extended Langmuir isotherm models. International Journal of Coal Science & Technology, 9(1) (2022), 45.
DOI: 10.21203/rs.3.rs-1019889/v1
Google Scholar
[16]
Dawn, R., et al, Origin of magnetization in silica-coated Fe3O4 nanoparticles revealed by soft X-ray magnetic circular dichroism. Brazilian Journal of Physics 52.3 (2022): 99.
DOI: 10.1007/s13538-022-01102-x
Google Scholar
[17]
T. G. Volova et al., Bacterial Cellulose (BC) and BC Composites: Production and Properties, Nanomater. 12 (2022) 192.
Google Scholar
[18]
S. H. Omar, R. M. Yunus, M. M. R. Khan, M. M. Saari, Ferromagnetic Enhancement of Microcrystalline Cellulose via Chemical Reduction Method. Journal of Chemical Engineering and Industrial Biotechnology, 9(2) (2023), 33-40.
DOI: 10.15282/jceib.v9i2.9253
Google Scholar
[19]
M. Ma, G. Liu, Z. Yang, G. Zhang, First-principles calculations of Pb2+ adsorption by halogen-doped SnS2. Physica B: Condensed Matter, 686 (2024), 416054.
DOI: 10.1016/j.physb.2024.416054
Google Scholar
[20]
Gnanasekar, T., et al., Improvement in photo-device properties of CuO thin films for opto-electronic applications: effects of (Ni, Co) co-doping Physica Scripta, 97(12) (2022), 125802.
DOI: 10.1088/1402-4896/ac9868
Google Scholar
[21]
H. Ma, L. Chen, W. Guo, L. Wang, J. Zhang, D. Zhang, Synergistic Promotion of Direct Interspecies Electron Transfer by Biochar and Fe₃O₄ Nanoparticles to Enhance Methanogenesis in Anaerobic Digestion of Vegetable Waste. Fermentation, 10(12) (2024), 656.
DOI: 10.3390/fermentation10120656
Google Scholar
[22]
G. Sun, F. Fu, B. Tang, Fate of metal-EDTA complexes during ferrihydrite aging: Interaction of metal-EDTA and iron oxides. Chemosphere, 291 (2022), 132791.
DOI: 10.1016/j.chemosphere.2021.132791
Google Scholar
[23]
J. Mittal, R. Ahmad, A. Mariyam, V.K. Gupta, A. Mittal, Expeditious and enhanced sequestration of heavy metal ions from aqueous environment by papaya peel carbon: a green and low-cost adsorbent. Desalination and Water Treatment, 210 (2021), 365-376.
DOI: 10.5004/dwt.2021.26562
Google Scholar