Effect of Carboxymethyl Cellulose on the Characteristics of Bioplastics from Oil Palm Empty Fruit Bunches (OPEFB) Cellulose and Cassava Peel Starch

Article Preview

Abstract:

One way to overcome the problem of non-renewable plastic raw materials and hard-to-degrade plastic waste is to make plastics that are easily degraded and use renewable raw materials. This research makes bioplastics from oil palm empty fruit bunches (OPEFB), cassava peel starch, oleic acid plasticizer, and Carboxymethyl Cellulose (CMC). In the manufacturing process, OPEFB is extracted to produce cellulose. Then, the starch and cellulose acetate solutions and CMC were mixed with stirring for 15 minutes and then 1 mL of oleic acid was added at a temperature of 70-80oC. Next, the bioplastic solution was molded and heated in an oven at 60°C for 6 hours. Variations in the composition of CMC by 35%, 40% and 45%. The results of this study obtained the highest water absorption value at 40% CMC variation of 88.89%. The highest biodegradation test value was at 40% CMC variation of 70.48%. Whereas for the highest tensile strength value in the 35% CMC composition variation of 2,133 MPa. For the highest elongation at 40% CMC variation of 2.212%. Thus, the more CMC composition used, the easier it is for bioplastics to be degraded.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1155)

Pages:

89-96

Citation:

Online since:

August 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Purwaningrum, Upaya mengurangi timbulan sampah plastik di lingkungan, JTL. 8 (2016) 141-147.

DOI: 10.25105/urbanenvirotech.v8i2.1421

Google Scholar

[2] A. Nandiyanto, M. Fiandini, R. Ragadhita, A. Sukmafitri, H. Salam, F. Triawan, Mechanical and biodegradation properties of cornstarch-based bioplastic material,  Mater. Phys. Mech. 44 (2020) 380-391.

Google Scholar

[3] N.D. Wibowo, Bahaya Kemasan Plastik dan Kresek, Tesis, Unsoed, Purwokerto, 2016.

Google Scholar

[4] I. Illing and M.B. Satriawan, Uji ketahanan air bioplastik dari limbah ampas sagu dengan penambahan variasi konsentrasi gelatin, Pros. Sem. Nas. Univ. Cokroaminoto Palopo. 03 (2017) 182–189.

Google Scholar

[5] R.F. Sinaga, G.M. Ginting, M.H.S. Ginting, R. Hasibuan, Pengaruh penambahan gliserol terhadap sifat kekuatan tarik dan pemanjangan saat putus bioplastik dari pati umbi talas, Jurnal Teknik Kimia USU. 3 (2014) 19-24.

DOI: 10.32734/jtk.v3i2.1608

Google Scholar

[6] D. Suryati, Penanganan Sampah Plastik, Pusat Dokumentasi dan Informasi Ilmiah LIPI, Jakarta, 1992.

Google Scholar

[7] M.R.M. Asyraf, M.R. Ishak, Agusril Syamsir, N.M. Nurazzi, F.A. Sabaruddin, S.S. Shazleen, M.N.F. Norrrahim, M. Rafidah, R.A. Ilyas, Mohamad Zakir Abd Rashid, M.R. Razman, Mechanical properties of oil palm fibre-reinforced polymer composites: a review, JMR&T. 17 (2022) 33-65.

DOI: 10.1016/j.jmrt.2021.12.122

Google Scholar

[8] D.P. Dewanti, Potensi selulosa dari limbah tandan kosong kelapa sawit untuk bahan baku bioplastik ramah lingkungan, J. Teknol. Lingkung. 19 (2018) 81-88.

DOI: 10.29122/jtl.v19i1.2644

Google Scholar

[9] C. Andahera, I. Sholikhah, D.A. Islamiati, M.D. Pusfitasari, Pengaruh penambahan jenis dan konsentrasi plasticizer terhadap kualitas bioplastik berbasis selulosa dari tandan kosong kelapa sawit, Indo. J. Pure App. Chem. 2 (2019) 46-54.

DOI: 10.26418/indonesian.v2i2.36901

Google Scholar

[10] B. Armynah, R. Anugrahwidya, D. Tahir, Composite cassava starch/chitosan/Pineapple leaf fiber (PALF)/Zinc Oxide (ZnO): Bioplastics with high mechanical properties and faster degradation in soil and seawater, Int. J. Biol. Macromol. 213 (2022) 814-823.

DOI: 10.1016/j.ijbiomac.2022.06.038

Google Scholar

[11] S. Kumar and K.S. Thakur, Bioplastics - classification, production, and their potential for food applications, J. Hill Agric. 8 (2017) 118-129.

Google Scholar

[12] Suryati, Meriatna and Marlina, Optimasi proses pembuatan bioplastik dari pati limbah kulit singkong, J. Teknol. Kim. UNIMAL. 5 (2016) 78-91.

DOI: 10.29103/jtku.v5i1.81

Google Scholar

[13] J. Yang, Y.C. Ching, C.H. Chuah, D.H. Nguyen, N.S. Liou, Synthesis, and characterization of starch/fiber-based bioplastic composites modified by citric acid-epoxidized palm oil oligomer with reactive blending, Ind Crops Prod. 170 (2021) 1-11.

DOI: 10.1016/j.indcrop.2021.113797

Google Scholar

[14] M. Masykuri, Rekayasa Bioplastik Berbahan Dasar Limbah Jagung dengan Plasticizer Asam Lemak Inti Sawit dan Aplikasinya sebagai Pengemas Biodegradable untuk Bahan Pangan dan Farmasi, Surakarta FKIP UNS, Semarang, 2006.

DOI: 10.21776/ub.jsal.2021.008.01.3

Google Scholar

[15] E.V. Natalia and Muryeti, Pembuatan plastik biodegradable dari pati singkong dan kitosan, J. Print. Packag. Technol. 1 (2020) 57-68.

Google Scholar

[16] N. Sasria, Asrilsyah, M.P.D. Lubis, A. Zulfikar, R.A. Tanjung, Sintesis dan karakterisasi plastik biodegradable berbasis pati nasi aking dan kitosan cangkang udang, Teknika: J. Sains Teknol. 16 (2020) 231–236.

DOI: 10.36055/tjst.v16i2.8700

Google Scholar

[17] L.K. Utami and G.A. Paramastri, Plastik biodegradable dari kulit pisang dengan penambahan kitosan dan plasticizer gliserol, J. Tek. Kim. 3 (2014) 163-167.

DOI: 10.35472/jsat.v4i1.205

Google Scholar

[18] W. Chaiwong, N. Samoh, T. Eksomtramage, K. Kaewtatip, Surface-treated oil palm empty fruit bunch fiber improved tensile strength and water resistance of wheat gluten-based bioplastic, Compos. B. Eng. 176 (2019) 1-7.

DOI: 10.1016/j.compositesb.2019.107331

Google Scholar

[19] N.A. Bahmid, K. Syamsu, A. Maddu, Production of cellulose acetate from oil palm empty fruit bunches cellulose, Chem. Process Eng. Res. 17 (2013) 12-19.

Google Scholar

[20] A. Alfiani, N. Sasria, M.P.D. Lubis, Pengaruh carboxymethyl celullose terhadap karakteristik bioplastik menggunakan tandan kosong kelapa sawit dan pati ampas tahu, JIP. 12 (2023) 12-16.

DOI: 10.36055/jip.v12i1.18932

Google Scholar

[21] S. Solekah, N. Sasria, H.A. Dewanto, Pengaruh penambahan gliserol dan kitosan kulit udang terhadap biodegradasi dan ketahanan air plastik biodegradable, Al-Kimiya: J. Ilmu Kim. Ter. 8 (2021) 80-86.

DOI: 10.15575/ak.v8i2.13917

Google Scholar

[22] E.P. Ningsih, D. Ariyani, Sunardi, Pengaruh penambahan carboxymethyl cellulose terhadap karakteristik bioplastik dari pati ubi nagara (ipomoea batatas l), Indo. J. Chem. Res. 7 (2019) 77-85.

DOI: 10.30598//ijcr.2020.7-sun

Google Scholar

[23] M.K. Hidayat, Latifah, S.M.R. Sedyawati, Penggunaan carboxy methyl cellulose dan gliserol pada pembuatan plastik biodegradable pati gembili, Indo. J. Chem. Sci. 2 (2013) 253-258.

Google Scholar

[24] N. Sasria, R. Hernando, M.P.D. Lubis, A. Zulfikar, Production of biodegradable plastics using aking rice starch and chitosan from crab shells as a substitute for conventional plastic, IOP Conf. Series: Materials Science and Engineering. 1053 (2021) 1-9.

DOI: 10.1088/1757-899x/1053/1/012079

Google Scholar

[25] N. Pooja, S. Shashank, B.N. Singh, N. Mazumder, Advancing sustainable bioplastics: chemical and physical modification of starch films for enhanced thermal and barrier properties, RSC Advances. 14 (2024) 23943-23951.

DOI: 10.1039/d4ra04263h

Google Scholar

[26] S. Nurfauzi, S.M. Sutan, B.D. Argo, G. Djoyowasito, Pengaruh konsentrasi cmc dan suhu pengeringan terhadap sifat mekanik dan sifat degradasi pada plastik biodegradable berbasis tepung jagung, JKPTB. 6 (2018) 90-99.

DOI: 10.29122/jitm.v1i2.3834

Google Scholar

[27] S.A. Siddiqui, X. Yang, R.K. Deshmukh, K.K. Gaikwad, N.A. Bahmid, R.C. Muñoz, Recent advances in reinforced bioplastics for food packaging – A critical review, Int. J. Biol. Macromol. 263 (2024) 1-22.

DOI: 10.1016/j.ijbiomac.2024.130399

Google Scholar