[1]
R. Hong, A review of the preparation methods and techniques of electron backscatter diffraction (EBSD) samples, Advances in Engineering Innovation 10 (2024) 20-25.
DOI: 10.54254/2977-3903/10/2024099
Google Scholar
[2]
N. Brodusch, H. Demers, R. Gauvin, Imaging with a commercial electron backscatter diffraction (EBSD) camera in a scanning electron microscope: a review, J. Imaging 4 (2018), 88-108.
DOI: 10.3390/jimaging4070088
Google Scholar
[3]
S. Doddapaneni, S. Kumar, S. Sharma, G. Shankar, M. Shettar, N. Kumar, G. Aroor, S.M. Ahmad, Advancements in EBSD Techniques: A comprehensive review on characterization of composites and metals, sample preparation, and operational parameters, J. Compos. Sci. 9 (2025) 132-169.
DOI: 10.3390/jcs9030132
Google Scholar
[4]
A.J. Schwartz, M. Kumar, B.L. Adams, D.P. Field, Electron Backscattered Diffraction in Materials Science, second ed., Springer, New York, 2009.
Google Scholar
[5]
AZtec EBSD Acquisition User Guide, Oxford Instruments, UK, Part No. 51-1720-466.
Google Scholar
[6]
M.M. Nowell, R.A. Witt, B.W. True, EBSD sample preparation: techniques, tips, and tricks, Microscopy Today 13 (2005) 44-48.
DOI: 10.1017/s1551929500053669
Google Scholar
[7]
B. Winiarski, A. Gholinia, K. Mingard, M. Gee, G.E. Thompson, P.J. Withers, Broad ion beam serial section tomography, Ultramicroscopy 172 (2017) 52-64.
DOI: 10.1016/j.ultramic.2016.10.014
Google Scholar
[8]
Y. Kodama, N. Tomioka, M. Ito, N. Imae, Developments in microfabrication of mineral samples for simultaneous EBSD–EDS analysis utilizing an FIB–SEM instrument: study on an S–type cosmic spherule from Antarctica, J. Mineral. Petrol. Sci. 115 (2020) 407-415.
DOI: 10.2465/jmps.181227
Google Scholar
[9]
T. Nishiyama, H. Nakamichi, Observation of retained γ grains in TRIP steels using SEM-FIB/EBSD method and examination of stability evaluation method, Tetsu-to-Hagane 108 (2022) 603-615.
DOI: 10.2355/tetsutohagane.tetsu-2022-029
Google Scholar
[10]
M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu, Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure, Phys. Rev. Lett. 58 (1987) 908-910.
DOI: 10.1103/physrevlett.58.908
Google Scholar
[11]
F. Sandiumenge, N. Vilalta, J. Rabier, X. Obradors, Subgrain boundary structure in melt-textured RBa2Cu3O7 (R=Y, Nd): Limitation of critical currents versus flux pinning, Phys. Rev. B 64 (2001) 184515 (10p).
Google Scholar
[12]
D.T. Verebelyi, D.K. Christen, R. Feenstra, C. Cantoni, A. Goyal, D.F. Lee, M. Paranthaman, P.N. Arendt, R.F. DePaula, J.R. Groves, C. Prouteau, Low angle grain boundary transport in YBa2Cu3O7-δ coated conductors, Appl. Phys. Lett. 76 (2000) 1755-1757.
DOI: 10.1063/1.126157
Google Scholar
[13]
D.M. Feldmann, D.C. Larbalestier, D.T. Verebelyi, W. Zhang, Q. Li, G.N. Riley, R. Feenstra, A. Goyal, D.F. Lee, M. Paranthaman, D.M. Kroeger, D.K. Christen, Inter- and intragrain transport measurements in YBa2Cu3O7-x deformation textured coated conductors, Appl. Phys. Lett. 79 (2001) 3998-4000.
DOI: 10.1063/1.1425952
Google Scholar
[14]
K. Ogasawara, N. Sakai, M. Murakami, Subgrain structures in melt-processed REBa2Cu3Oy (RE = Y, Sm) bulk superconductors, Supercond. Sci. Technol. 13 (2000) 688-692.
DOI: 10.1088/0953-2048/13/6/312
Google Scholar
[15]
D. Grossin, C. Henrist, J.-Ph. Mathieu, S. Meslin, C. Harnois, J.-G. Noudem, R. Cloots, D. Chateigner, EBSD study on YBCO textured bulk samples: correlation between crystal growth and 'microtexture', Supercond. Sci. Technol. 19 (2006) 190-199.
DOI: 10.1088/0953-2048/19/2/007
Google Scholar
[16]
A. Koblischka-Veneva, M.R. Koblischka, EBSD analysis of melt-textured YBCO with embedded Ag-2411 nanoparticles, Mater. Sci. Eng. B. 151 (2008) 65-68.
DOI: 10.1016/j.mseb.2008.02.012
Google Scholar
[17]
A. Koblischka-Veneva, M.R. Koblischka, J. Schmauch, M. Murakami, Transmission EBSD (t-EBSD) to determine grain and grain boundary properties on nanostructured superconductor samples, J. Phys. Conf. Ser. 1293 (2019) 012008 (8p).
DOI: 10.1088/1742-6596/1293/1/012008
Google Scholar
[18]
A. Koblischka-Veneva, M.R. Koblischka, Residual stress/strain analysis of bulk YBCO superconductors using EBSD, IEEE Trans. Appl. Supercond. 32 (2022) 6800405.
DOI: 10.1109/tasc.2021.3134933
Google Scholar
[19]
A. Koblischka-Veneva, M.R. Koblischka, F. Mucklich, M. Murakami, OIM and X‐ray texture analysis of melt‐textured YBCO superconductors, Phys. Status Solidi C 2 (2005) 1708-1713.
DOI: 10.1002/pssc.200460816
Google Scholar
[20]
C. Yang, Y. Xia, Y. Xue, F. Zhang, B. Tao, J. Xiong, The effects of grain boundaries on the current transport properties in YBCO-coated conductors, Nanoscale Res. Lett. 10 (2015) 416 (8p).
DOI: 10.1186/s11671-015-1124-8
Google Scholar
[21]
V.F. Solovyov, D. Abraimov, D. Miller, Q. Li, H. Wiesmann, Correlation between YBa2Cu3O7 nuclei density and the grain orientation of the CeO2 buffered Ni–W template of the second-generation superconducting wire, J. Appl. Phys. 105 (2009) 113927 (7p).
DOI: 10.1063/1.3143043
Google Scholar
[22]
M.R. Koblischka, A. Koblischka-Veneva, E.S. Reddy, G.J. Schmitz, Analysis of the microstructure of superconducting YBCO foams by means of AFM and EBSD, J. Adv. Ceram. 3 (2014) 317.
DOI: 10.1007/s40145-014-0123-z
Google Scholar
[23]
C. Pathak, S.K. Mishra, A review on the synthesis of Y-Ba-Cu-oxide powder, Supercond. Sci. Technol. 18 (2005) R67-R89.
DOI: 10.1088/0953-2048/18/9/r01
Google Scholar
[24]
R.A.M. Arebat, M.M.A. Kechik, C.S. Kien, L.K. Pah, H.K. Peh, A.H. Shaari, Superconducting transition in YBCO bulk ceramics: correlating sintering temperature, phase formation, and AC susceptibility, Sains Malaysiana 54 (2025) 1427-1437.
DOI: 10.17576/jsm-2025-5405-18
Google Scholar
[25]
A.R.A. Mohamed, M.M.A. Kechik, C.S. Kien, L.K. Pah, H. Baqiah, K.K.M. Shariff, A. H. Shaari, Y.S. Hong, N.A.B.M.I.A. Sah, M. Miryala, YBa2Cu3O7-d bulk superconductors: exploring the impact of two synthesis techniques on the microstructure and critical temperature, Solid State Science and Technology 32, (2024) 28-41.
DOI: 10.1007/s41779-025-01172-5
Google Scholar
[26]
S.-P. Tsai, P.J. Konijnenberg, I. Gonzalez, S. Hartke, T.A. Griffiths, M. Herbig, K. Kawano-Miyata, A. Taniyama, N. Sano, S. Zaefferer, Development of a new, fully automated system for electron backscatter diffraction (EBSD)-based large volume three-dimensional microstructure mapping using serial sectioning by mechanical polishing, and its application to the analysis of special boundaries in 316L stainless steel, Rev. Sci. Instrum. 93 (2022) 093707 (18p).
DOI: 10.1063/5.0087945
Google Scholar