Unveiling Single-Crystal Domains in Granular Structures of Porous YBa2Cu3Oy Using EBSD without Surface Polishing

Article Preview

Abstract:

Electron backscatter diffraction (EBSD) conventionally necessitates the preparation of flat, damage-free surfaces, typically achieved through mechanical or chemical polishing. However, for porous materials susceptible to fracture, such procedures are not only technically challenging but also risk altering or obscuring critical microstructural features, particularly at fine length scales. Despite the widespread reliance on surface polishing, its necessity in EBSD analysis—especially for highly porous materials—has seldom been critically examined, and studies omitting such preparation remain scarce. In the present study, EBSD analysis was conducted on porous polycrystalline YBa2Cu3Oy without any surface treatment. The absence of polishing preserved the pristine microstructure, free from artifacts commonly introduced by conventional preparation techniques. Although the surface topography limited the number of pixels yielding high-quality diffraction patterns, orientation imaging revealed that the surface granules predominantly exhibit single-crystalline domain structures. These findings demonstrate that EBSD can be successfully applied to porous materials without surface polishing, thereby providing a rapid, non-destructive approach for microstructural characterization while preserving the material’s intrinsic structural integrity.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1155)

Pages:

135-143

Citation:

Online since:

August 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Hong, A review of the preparation methods and techniques of electron backscatter diffraction (EBSD) samples, Advances in Engineering Innovation 10 (2024) 20-25.

DOI: 10.54254/2977-3903/10/2024099

Google Scholar

[2] N. Brodusch, H. Demers, R. Gauvin, Imaging with a commercial electron backscatter diffraction (EBSD) camera in a scanning electron microscope: a review, J. Imaging 4 (2018), 88-108.

DOI: 10.3390/jimaging4070088

Google Scholar

[3] S. Doddapaneni, S. Kumar, S. Sharma, G. Shankar, M. Shettar, N. Kumar, G. Aroor, S.M. Ahmad, Advancements in EBSD Techniques: A comprehensive review on characterization of composites and metals, sample preparation, and operational parameters, J. Compos. Sci. 9 (2025) 132-169.

DOI: 10.3390/jcs9030132

Google Scholar

[4] A.J. Schwartz, M. Kumar, B.L. Adams, D.P. Field, Electron Backscattered Diffraction in Materials Science, second ed., Springer, New York, 2009.

Google Scholar

[5] AZtec EBSD Acquisition User Guide, Oxford Instruments, UK, Part No. 51-1720-466.

Google Scholar

[6] M.M. Nowell, R.A. Witt, B.W. True, EBSD sample preparation: techniques, tips, and tricks, Microscopy Today 13 (2005) 44-48.

DOI: 10.1017/s1551929500053669

Google Scholar

[7] B. Winiarski, A. Gholinia, K. Mingard, M. Gee, G.E. Thompson, P.J. Withers, Broad ion beam serial section tomography, Ultramicroscopy 172 (2017) 52-64.

DOI: 10.1016/j.ultramic.2016.10.014

Google Scholar

[8] Y. Kodama, N. Tomioka, M. Ito, N. Imae, Developments in microfabrication of mineral samples for simultaneous EBSD–EDS analysis utilizing an FIB–SEM instrument: study on an S–type cosmic spherule from Antarctica, J. Mineral. Petrol. Sci. 115 (2020) 407-415.

DOI: 10.2465/jmps.181227

Google Scholar

[9] T. Nishiyama, H. Nakamichi, Observation of retained γ grains in TRIP steels using SEM-FIB/EBSD method and examination of stability evaluation method, Tetsu-to-Hagane 108 (2022) 603-615.

DOI: 10.2355/tetsutohagane.tetsu-2022-029

Google Scholar

[10] M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu, Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure, Phys. Rev. Lett. 58 (1987) 908-910.

DOI: 10.1103/physrevlett.58.908

Google Scholar

[11] F. Sandiumenge, N. Vilalta, J. Rabier, X. Obradors, Subgrain boundary structure in melt-textured RBa2Cu3O7 (R=Y, Nd): Limitation of critical currents versus flux pinning, Phys. Rev. B 64 (2001) 184515 (10p).

Google Scholar

[12] D.T. Verebelyi, D.K. Christen, R. Feenstra, C. Cantoni, A. Goyal, D.F. Lee, M. Paranthaman, P.N. Arendt, R.F. DePaula, J.R. Groves, C. Prouteau, Low angle grain boundary transport in YBa2Cu3O7-δ coated conductors, Appl. Phys. Lett. 76 (2000) 1755-1757.

DOI: 10.1063/1.126157

Google Scholar

[13] D.M. Feldmann, D.C. Larbalestier, D.T. Verebelyi, W. Zhang, Q. Li, G.N. Riley, R. Feenstra, A. Goyal, D.F. Lee, M. Paranthaman, D.M. Kroeger, D.K. Christen, Inter- and intragrain transport measurements in YBa2Cu3O7-x deformation textured coated conductors, Appl. Phys. Lett. 79 (2001) 3998-4000.

DOI: 10.1063/1.1425952

Google Scholar

[14] K. Ogasawara, N. Sakai, M. Murakami, Subgrain structures in melt-processed REBa2Cu3Oy (RE = Y, Sm) bulk superconductors, Supercond. Sci. Technol. 13 (2000) 688-692.

DOI: 10.1088/0953-2048/13/6/312

Google Scholar

[15] D. Grossin, C. Henrist, J.-Ph. Mathieu, S. Meslin, C. Harnois, J.-G. Noudem, R. Cloots, D. Chateigner, EBSD study on YBCO textured bulk samples: correlation between crystal growth and 'microtexture', Supercond. Sci. Technol. 19 (2006) 190-199.

DOI: 10.1088/0953-2048/19/2/007

Google Scholar

[16] A. Koblischka-Veneva, M.R. Koblischka, EBSD analysis of melt-textured YBCO with embedded Ag-2411 nanoparticles, Mater. Sci. Eng. B. 151 (2008) 65-68.

DOI: 10.1016/j.mseb.2008.02.012

Google Scholar

[17] A. Koblischka-Veneva, M.R. Koblischka, J. Schmauch, M. Murakami, Transmission EBSD (t-EBSD) to determine grain and grain boundary properties on nanostructured superconductor samples, J. Phys. Conf. Ser. 1293 (2019) 012008 (8p).

DOI: 10.1088/1742-6596/1293/1/012008

Google Scholar

[18] A. Koblischka-Veneva, M.R. Koblischka, Residual stress/strain analysis of bulk YBCO superconductors using EBSD, IEEE Trans. Appl. Supercond. 32 (2022) 6800405.

DOI: 10.1109/tasc.2021.3134933

Google Scholar

[19] A. Koblischka-Veneva, M.R. Koblischka, F. Mucklich, M. Murakami, OIM and X‐ray texture analysis of melt‐textured YBCO superconductors, Phys. Status Solidi C 2 (2005) 1708-1713.

DOI: 10.1002/pssc.200460816

Google Scholar

[20] C. Yang, Y. Xia, Y. Xue, F. Zhang, B. Tao, J. Xiong, The effects of grain boundaries on the current transport properties in YBCO-coated conductors, Nanoscale Res. Lett. 10 (2015) 416 (8p).

DOI: 10.1186/s11671-015-1124-8

Google Scholar

[21] V.F. Solovyov, D. Abraimov, D. Miller, Q. Li, H. Wiesmann, Correlation between YBa2Cu3O7 nuclei density and the grain orientation of the CeO2 buffered Ni–W template of the second-generation superconducting wire, J. Appl. Phys. 105 (2009) 113927 (7p).

DOI: 10.1063/1.3143043

Google Scholar

[22] M.R. Koblischka, A. Koblischka-Veneva, E.S. Reddy, G.J. Schmitz, Analysis of the microstructure of superconducting YBCO foams by means of AFM and EBSD, J. Adv. Ceram. 3 (2014) 317.

DOI: 10.1007/s40145-014-0123-z

Google Scholar

[23] C. Pathak, S.K. Mishra, A review on the synthesis of Y-Ba-Cu-oxide powder, Supercond. Sci. Technol. 18 (2005) R67-R89.

DOI: 10.1088/0953-2048/18/9/r01

Google Scholar

[24] R.A.M. Arebat, M.M.A. Kechik, C.S. Kien, L.K. Pah, H.K. Peh, A.H. Shaari, Superconducting transition in YBCO bulk ceramics: correlating sintering temperature, phase formation, and AC susceptibility, Sains Malaysiana 54 (2025) 1427-1437.

DOI: 10.17576/jsm-2025-5405-18

Google Scholar

[25] A.R.A. Mohamed, M.M.A. Kechik, C.S. Kien, L.K. Pah, H. Baqiah, K.K.M. Shariff, A. H. Shaari, Y.S. Hong, N.A.B.M.I.A. Sah, M. Miryala, YBa2Cu3O7-d bulk superconductors: exploring the impact of two synthesis techniques on the microstructure and critical temperature, Solid State Science and Technology 32, (2024) 28-41.

DOI: 10.1007/s41779-025-01172-5

Google Scholar

[26] S.-P. Tsai, P.J. Konijnenberg, I. Gonzalez, S. Hartke, T.A. Griffiths, M. Herbig, K. Kawano-Miyata, A. Taniyama, N. Sano, S. Zaefferer, Development of a new, fully automated system for electron backscatter diffraction (EBSD)-based large volume three-dimensional microstructure mapping using serial sectioning by mechanical polishing, and its application to the analysis of special boundaries in 316L stainless steel, Rev. Sci. Instrum. 93 (2022) 093707 (18p).

DOI: 10.1063/5.0087945

Google Scholar