Ramie Fiber as an Alternative Green Reinforcement to Glass Fiber/Polypropylene Composites

Article Preview

Abstract:

Ramie fibers as a natural fiber are frequently utilized in fiber-reinforced polypropylene composite preparation due to their remarkable mechanical properties, renewable, and sustainable materials. This research investigated the effect of ramie fiber addition at various compositions on the tensile and impact properties of ramie fiber-reinforced waste polypropylene composites (RFRWPC). Furthermore, a comparative analysis was conducted to assess the potential of ramie fiber as a green reinforcement. In this research, ramie fiber was treated in a 10% NaOH solution at 100 °C for two hours. The treated ramie fiber with a volume fraction of 5, 10, and 15% was blended with waste polypropylene using an extruder at 180 °C to produce an RFRWPC pellet. The pellet obtained was used to prepare tensile and impact tests through an injection molding machine at 195 °C. The tensile and impact properties of RFRWPC were measured according to ASTM D638 and ASTM D256, respectively. The results showed that the polypropylene composite reinforced with 10% ramie fiber has a tensile strength 4.61% higher than glass fiber reinforced waste polypropylene composite (GFRWPC). RFRWPC with equivalent reinforcement percentages to commercial GFRWPC have nearly identical impact strength. The research findings demonstrated the excellent potential of ramie fiber as a green reinforcement as a substitute for glass fiber in enhancing the mechanical properties of polypropylene composites.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1160)

Pages:

25-30

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Rani, Meenu, and U. Shanker, The role of nanomaterials in plastics biodegradability, Biodegradability of Conventional Plastics: Opportunities, Challenges, and Misconceptions, Elsevier, 2023, Pages 283-308

DOI: 10.1016/b978-0-323-89858-4.00012-9

Google Scholar

[2] H. A. Maddah, Polypropylene as a Promising Plastic: A Review, American Journal of Polymer Science 2016, 6(1): 1-11.

Google Scholar

[3] A. Alsabri, F. Tahir, S. G. Al-Ghamdi, Life-Cycle Assessment of Polypropylene Production in the Gulf Cooperation Council (GCC) Region, Polymers 2021, 13, 3793

DOI: 10.3390/polym13213793

Google Scholar

[4] D. S. Achilias, C. Roupakias, P. Megalokonomos, and A. A. Lappas, E. V. Antonakou, Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP), Journal of Hazardous Materials, Volume 149, Issue 3, 19 November 2007, Pages 536-542.

DOI: 10.1016/j.jhazmat.2007.06.076

Google Scholar

[5] K. Lingkungan, "National Plastic Waste Reduction Strategic Actions for Indonesia."

Google Scholar

[6] M. D. Sampers, D. Bartomeu, M. P. Arietta, J. M. Ferri, and J. L. Martinez, Interference of Biodegradable Plastics in the Polypropylene Recycling Process, Materials 2018, 11(10), 1886;.

DOI: 10.3390/ma11101886

Google Scholar

[7] N. Vidakis, M. Petousis, L. Tzounis, A. Maniadi, E. Velidakis, N. Mountakis, D. Papageorgiou, M. Liebscher, V. Mechtcherine, Sustainable Additive Manufacturing: Mechanical Response of Polypropylene over Multiple Recycling Processes, Sustainability 2021, 13, 159.

DOI: 10.3390/su13010159

Google Scholar

[8] M. M-Lopez, G. M-Barrera, R. S. Delgado, O. Gencel, Recycling polypropylene and polyethylene wastes in production of polyester based polymer mortars, Construction and Building Materials, Volume 274, 8 March 2021, 121487

DOI: 10.1016/j.conbuildmat.2020.121487

Google Scholar

[9] V. Srebrenkoska, G. B. Gaceva, M. Avella, M. E. Errico, G. Gentile, Recycling of polypropylene-based eco-composites, Polymer International, Volume57, Issue11

DOI: 10.1002/pi.2470

Google Scholar

[10] A. Vardai, T. Lummerstorfer, C. Pretschuh, M. Jerabek, M. Gahleitner, G. Faludi, J. Moczo, B. Pukanszky, Comparative study of fiber reinforced PP composites: Effect of fiber type, coupling and failure mechanisms, Composites Part A: Applied Science and Manufacturing, Volume 133, June 2020, 105895.

DOI: 10.1016/j.compositesa.2020.105895

Google Scholar

[11] A. Ashori, dan A. Nourbakhsh, A Comparative Study on Mechanical Properties and Water Absorption Behavior of Fiber-Reinforced Polypropylene Composites Prepared by OCC Fiber and Aspen Fiber, Published online in Wiley InterScience (www.interscience.wiley.com).

DOI: 10.1002/pc.20582

Google Scholar

[12] M. Etcheverry and S. E. Barbosa, Glass Fiber Reinforced Polypropylene Mechanical Properties Enhancement by Adhesion Improvement, Materials 2012, 5(6), 1084-1113

DOI: 10.3390/ma5061084

Google Scholar

[13] G. Colucci, H. Simon, D. Rancato, B. Martorana, and C. Badini, Effect of recycling on polypropylene composites reinforced with glass fibres, Journal of Thermoplastic Composite Materials, 1–17.

DOI: 10.1177/0892705715610407

Google Scholar

[14] M. Neghab, A. Alipour, Respiratory Health Following Long Term Occupational Exposure to Fiberglass Dust, IRCMJ 2010; 12(2):145-150 ©Iranian Red Crescent Medical Journal.

Google Scholar

[15] K. Minamoto, M. Nagano, T. Inaoka, T. Kitano, K. Ushijima, Y. Fukuda, and M. Futatsuka, Skin Problems among Fiber-Glass Reinforced Plastics Factory Workers in Japan, Industrial Health 2002, 40, 42–50.

DOI: 10.2486/indhealth.40.42

Google Scholar

[16] M. R. Sanjay, S. Siengchin, J. Parameswaranpillai, M. Jawaid, C. I. Pruncu, and A. Khan, A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization, Carbohydrate Polymers, Volume 207, 1 March 2019, Pages 108-121

DOI: 10.1016/j.carbpol.2018.11.083

Google Scholar

[17] A. Karimah, M. R. Ridho, S. S. Munawar, D. S. Adi, R. Damayanti, B. Subiyanto, W. Fatriasari, A. Fudholi, A review on natural fibers for development of eco-friendly bio-composite: characteristics, and utilizations, Journal of Materials Research and Technology, Volume 13, July–August 2021, Pages 2442-2458.

DOI: 10.1016/j.jmrt.2021.06.014

Google Scholar

[18] A. Arbelaiz, B. Fernandez, J. A. Ramos, A. Retegi, R. Liano-ponte, and I. Mondragon, Mechanical properties of short flax fibre bundle/polypropylene composites: Influence of matrix/fibre modification, fibre content, water uptake and recycling, Composites Science and Technology 65 (2005) 1582–1592

DOI: 10.1016/j.compscitech.2005.01.008

Google Scholar

[19] X. Chen, Q. Guo, and Y. Mi, Bamboo fiber-reinforced polypropylene composites: A study of the mechanical properties, Journal of Applied Polymer Science, Volume 69, Issue10.

Google Scholar

[20] Y. Feng, Y. Hu, G. Zhao, J. Yin, and W. Jiang, Preparation and mechanical properties of high-performance short ramie fiber-reinforced polypropylene composites, Journal of Applied Polymer Science, Vol. 122, 1564–1571 (2011).

DOI: 10.1002/app.34281

Google Scholar

[21] L. Cheng, S. Duan, X. Feng, K. Zheng, Q. Yang, H. Xu, W. Luo, and Y. Peng, Ramie-degumming methodologies: A short review, Journal of Engineered Fibers and Fabrics, Volume 15, January-December 2020.

DOI: 10.1177/1558925020940105

Google Scholar

[22] S. R. D. Petroudy, Physical and mechanical properties of natural fibers, Advanced High Strength Natural Fibre Composites in Construction, Elsevier.

DOI: 10.1016/b978-0-08-100411-1.00003-0

Google Scholar

[23] S. Habibie, N. Suhendra, B. A. Setiawan, M. Hamzah, N. Aisah, D. A. Fitriani, R. Tasomarra, M. Anggaravidya, Prospect of Ramie Fiber Development in Indonesia and Manufacturing of Ramie Fiber Textile-based Composites for Industrial Needs, an Overview, International Journal of Composite Materials, 2021; 11(3): 43-53

Google Scholar

[24] K. O. Reddy, C. U. Maheswari, M. Shukla, J. I. Song, and A. V. Rajulu, Tensile and Structural Characterization of Alkali Treated Borassus Fruit Fine Fibers, Composite: Part B 44 (2013) 433 – 438. (17)

DOI: 10.1016/j.compositesb.2012.04.075

Google Scholar

[25] A. Gomes, K. Goda, and J. Ohgi, Effects of Alkali Treatment to Reinforcement on Tensile Properties of Curaura Fiber Green Composite, JSME International Journal Series A vol. 47, no. 4, 2004.(18)

DOI: 10.1299/jsmea.47.541

Google Scholar

[26] K. O. Reddy, C. U. Maheswari, M. Shukla, and A. V. Rajulu, Chemical composition and structural characterization of Napier grass fibers, Materials Letters, Volume 67, Issue 1, 15, Pages 35-38.(19)

DOI: 10.1016/j.matlet.2011.09.027

Google Scholar

[27] A. Ashori, dan A. Nourbakhsh, A Comparative Study on Mechanical Properties and Water Absorption Behavior of Fiber-Reinforced Polypropylene Composites Prepared by OCC Fiber and Aspen Fiber, Published online in Wiley InterScience (www.interscience.wiley.com).(20)

DOI: 10.1002/pc.20582

Google Scholar