[1]
K. J. Osinubi, P. Yohanna, and A. O. Eberemu, Cement modification of tropical black clay using iron ore tailing as admixture, J. Transp. Geotech., 5(2015) 35–49.
DOI: 10.1016/j.trgeo.2015.10.001
Google Scholar
[2]
Z. Yu, H. Xinlei, W. Yijie, and J. Ningjun, A critical review of biomineralization in environmental geotechnics: Applications, trends, and perspectives, Biogeotechnics, 1 (2023). 100003.
DOI: 10.1016/j.bgtech.2023.100003
Google Scholar
[3]
P. Yohanna, R. K. Etim, N. I. Ekene, et al., Case evaluation of structural strength improvement of cement stabilized lateritic soil reinforced with sisal fibers and plastic waste strips, Discover Civil Engineering, (2024).
DOI: 10.1007/s44290-024-00069-9
Google Scholar
[4]
D. A. Rubinos, and G. Spagnoli, Utilization of waste products as alternative landfill liner and cover materials—A critical review, Crit. Rev. Environ. Sci. Technol., (2018).
DOI: 10.1080/10643389.2018.1461495
Google Scholar
[5]
R. K. Etim, T. S. Ijimdiya, A. O. Eberemu, and K. J. Osinubi, Compatibility interaction of landfill leachate with lateritic soil bio-treated with Bacillus megaterium: Criterion for barrier material in municipal solid waste containment, Cleaner Materials, 5(2022) 100110.
DOI: 10.1016/j.clema.2022.100110
Google Scholar
[6]
H. T. Christensen, P. Kjeldsen, P. L. Bjerg, et al., Biogeochemistry of landfill leachate plumes, J. Appl. Geochem., 16:7–8, (2001) 659–718.
DOI: 10.1016/S0883-2927(00)00082-2
Google Scholar
[7]
J. T. DeJong, M. B. Fritzges, and K. Nüsslein, Microbial induced cementation to control sand response to undrained shear, J. Geotech. Geoenviron. Eng., 132, 11(2006) 1381–1392.
DOI: 10.1061/(ASCE)1090-0241(2006)132:11(1381)
Google Scholar
[8]
I. Ahenkorah, M. M. Rahman, M. R. Karim, and P. R. Teasdale, A comparison of mechanical responses for microbial and enzyme induced cement sand, Geotechnique Letters, 10, 4(2020) 1–9.
DOI: 10.1680/jgele.20.00061
Google Scholar
[9]
T. Xuwen, X. Hongbin, L. Zixiang, et al., Experimental study on the strength characteristics of expansive soils improved by the MICP method, Geofluids, 10 (2022). 3089820.
DOI: 10.1155/2022/3089820
Google Scholar
[10]
W. Kangda, W. Shifan, and C. Jian, Mitigation of soil liquefaction using microbial technology: An overview, Biogeotechnics, 1 (2023), 100005.. https://doi.org/10.1016/j.bgtech.2023. 100005.
DOI: 10.1016/j.bgtech.2023.100005
Google Scholar
[11]
T. Feng, A. C. Smertenko, and S. K. Hamdan, Microbially induced carbonate precipitation (MICP) for soil strengthening: A comprehensive review, Biogeotechnics, 1, (2023), 100002.
DOI: 10.1016/j.bgtech.2023.100002
Google Scholar
[12]
Y. Wang, C. Kapiris, S. Tang, and H. Cheng, Applications of microbial-induced carbonate precipitation: A state-of-the-art review, Biogeotechnics, 1, (2023), 100008.
DOI: 10.1016/j.bgtech.2023.100008
Google Scholar
[13]
K. J. Osinubi, P. Yohanna, A. O. Eberemu, and T. S. Ijimdiya, Evaluation of hydraulic conductivity of lateritic soil treated with Bacillus coagulans for use in waste containment applications, in Proc., 8th Int. Congress on Environmental Geotechnics (ICEG 2018), 3, L. Zhan, Y. Chen, and A. Bouazza, Eds., p.401–409, 2019a.
DOI: 10.1007/978-981-13-2227-3_50
Google Scholar
[14]
H.T. Christensen, P. Kjeldsen, H. J. Albrechtsen, et al., Attenuation of landfill leachate pollutants in aquifers, Crit. Rev. Environ. Sci. Technol., 24, 2: (1994) 119–202.
DOI: 10.1080/10643389409388463
Google Scholar
[15]
K. J. Osinubi, R. J. Oluremi, A. O. Eberemu, and T. S. Ijimdiya, Interaction of landfill leachate with compacted lateritic soil–waste wood ash mixture, Proc. Inst. Civ. Eng. Waste Resour. Manage. 170, 3–4, (2017) 128–138.
DOI: 10.1680/jwarm.17.00012
Google Scholar
[16]
K. J. Osinubi, A. O. Eberemu, T. S. Ijimdiya, et al., Review of the use of microorganisms in geotechnical engineering applications, SN Appl. Sci., 2, 207, (2020).
DOI: 10.1007/s42452-020-1974-2
Google Scholar
[17]
R. K. Etim, A. O. Eberemu, T. S. Ijimdiya, and K. J. Osinubi, Coupled effect of cementation solution, curing period, moulding water content and compactive effort on strength performance of bio-treated lateritic soil for waste containment application, J. Hazard. Toxic Radioactive Waste, (2023).
DOI: 10.1061/JHTRBP.HZENG-1201
Google Scholar
[18]
K. J. Osinubi, A. O. Eberemu, T. S. Ijimdiya, S. E. Yakubu, et al., Volumetric shrinkage of compacted lateritic soil treated with Bacillus pumilus, in Proc. GeoShanghai 2018 Int. Conf.: Geoenvironment and Geohazard, A. Farid and H. Chen, Eds., (2018) 315–324.
DOI: 10.1007/978-981-13-0128-5_36
Google Scholar
[19]
K. J. Osinubi, A. O. Eberemu, T. S. Ijimdiya, and P. Yohanna, Interaction of landfill leachate with compacted lateritic soil treated with Bacillus coagulans using microbial-induced calcite precipitation approach, J. Hazard. Toxic Radioactive Waste, (2019b).
DOI: 10.1061/(ASCE)HZ.2153-5515.0000465
Google Scholar
[20]
S. Stocks-Fischer, J. K. Galinat, and S. S. Bang, Microbiological precipitation of CaCO₃, Soil Biol. Biochem., 31,11: (1999) 1563–1571.
DOI: 10.1016/s0038-0717(99)00082-6
Google Scholar
[21]
BS 1377, Methods of Testing Soils for Civil Engineering Purposes. London: British Standards Institution, (1990).
Google Scholar
[22]
K. Rowshanbakhta, M. Khamehchiyana, R. H. Sajedib, and M. R. Nikudela, Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment, Ecol. Eng., 89 (2016) 49–55.
DOI: 10.1016/j.ecoleng.2016.01.010
Google Scholar
[23]
S.-G. Choi, S.-S. Park, S. Wu, and J. Chu, Methods for calcium carbonate content measurement of biocemented soils, J. Mater. Civ. Eng., 29, 11 (2017) 06017015.
DOI: 10.1061/(ASCE)MT.1943-5533.0002064
Google Scholar
[24]
AASHTO, Guide for Design of Pavement Structures. Washington, DC: American Association of State Highway and Transportation Officials, (1993).
Google Scholar
[25]
J. T. DeJong, B. M. Mortensen, B. C. Martinez, and D. C. Nelson, Bio-mediated soil improvement, Ecol. Eng., 36, 2: (2010) 197–210.
DOI: 10.1016/j.ecoleng.2008.12.029
Google Scholar
[26]
M. Burbank, T. Weaver, R. Lewis, et al., Geotechnical tests of sands following bioinduced calcite precipitation catalyzed by indigenous bacteria, J. Geotech. Geoenviron. Eng., 139, 6: (2012) 928–936.
DOI: 10.1061/(ASCE)GT.1943-5606.0000781
Google Scholar
[27]
S.-G. Choi, K. Wang, and J. Chu, Properties of biocemented, fiber reinforced sand, Constr. Build. Mater., 120, (2016) 623–629.
DOI: 10.1016/j.conbuildmat.2016.05.124
Google Scholar
[28]
L. Chi, Y. De, L. Shihui, et al., Improvement of geomechanical properties of bio-remediated Aeolian sand, Geomicrobiol. J., 35, 2: (2017) 132–140.
DOI: 10.1080/01490451.2017.1338798
Google Scholar
[29]
F.M. Francisca and D.A. Glatstein, Long-term hydraulic conductivity of compacted soils permeated with landfill leachate, Appl. Clay Sci., 49 (2010). 3:187–193.
DOI: 10.1016/j.clay.2010.05.003
Google Scholar
[30]
T. P. Clement, B. S. Hooker, and R. S. Skeen, Macroscopic models for predicting changes in saturated porous media properties caused by microbial growth, Ground Water, 34,. 5: (1996) 934–942.
DOI: 10.1111/j.1745-6584.1996.tb02088.x
Google Scholar
[31]
M. Thullner, J. Zeyer, and W. Kinzelbach, Influence of microbial growth on hydraulic properties of pore networks, Transp. Porous Media, 49, 1: (2003) 99–122.
DOI: 10.1023/A:1016030112089
Google Scholar
[32]
L. Cheng, R.C. Ralf, and M. A. Shahin, Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation, Can. Geotech. J., 50,(2013) 81–90.
DOI: 10.1139/cgj-2012-0023
Google Scholar
[33]
B.P. Naveen, J. Sumalatha, and R. K. Malik, A study on contamination of ground surface water bodies by leachate leakage from a landfill in Bangalore, India, Geo-Engineering, 9, 27, (2018).
DOI: 10.1186/s40703-018-0095-x
Google Scholar
[34]
K.S. Layth and A. I. Mohammad, Bio-cementation of sandy soil through bacterial processing to precipitate carbonate, Al-Nahrain J. Eng. Sci., 23,3: (2020) 225–235.
DOI: 10.29194/NJES.23030225
Google Scholar
[35]
K.M.N.S. Wani and B.A. Mir, Microbial geo-technology in ground improvement techniques: A comprehensive review, Innov. Infrastruct. Solut., 5, 82, (2020).
DOI: 10.1007/s41062-020-00335-6
Google Scholar
[36]
K.M.N.S. Wani and B. A. Mir, An experimental study on the bio-cementation and bio-clogging effect of bacteria in improving weak dredged soils, J. Geotech. Geol. Eng., (2020).
DOI: 10.1007/s10706-020-01494-0
Google Scholar
[37]
J.T. DeJong, et al., Biogeochemical processes and geotechnical applications: Progress, opportunities, and challenges, Geotechnique, 63, (2013) 4:287–301.
DOI: 10.1680/geot.SIP13.P.017
Google Scholar