Lateritic Soil-Leachate Compatibility Study Using MICP Approach

Article Preview

Abstract:

Increase in the rate of generation of household waste (i.e Municipal Solid waste, MSW) in Nigeria necessitated the growing demand for a safe way to dispose MSW. When MSW comes in contact with water, it generates leachates, a poisonous fluid, that are harmful to humans. The use of landfill system for disposal of MSW has been a good approach for waste disposal. This study evaluated the effect of some hydraulic conductivity (H) parameters (i.e void ratio, degree of saturation and microbial suspension) and permeating fluids on the interaction of lateritic soil subjected to varying steps of treatments with Bacillus coagulans (B. coagulans) and subject to leachate environment for landfill application. Soil was mixed with 0 to 2.4 × 109 cells/ml of B. coagulans. After mixing and compaction, Calcium solution was introduced by gravity on the compacted soil samples and were permeated to percolate to a point of partial saturation. After application of Calcium solution, compacted samples were saturated in water for 24 to 48 hours up until fully saturated, thereafter subjected to H test using water as well as leachate as permeating fluids for a period of 91 days. Results show that void ratio values varied in the ranges 0.550-0.471 and 0.481- 0.485 for specimens where water and leachate were used as permeation fluids. Degree of saturation varied meaningfully with permeation fluids. H values varied in the ranges 1.51 x 10-9 -1.71 x 10-9 m/s and 6.84 x 10-10 - 8.27 x 10-10 m/s for specimens where water and leachates were used as permeation fluids. Soil-leachate interaction study and micro structural investigations revealed that the modified soil is well-matched with leachate and met the regulatory H value of 1.0 × 10-9 m/s for used in landfill applications.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1160)

Pages:

59-68

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. J. Osinubi, P. Yohanna, and A. O. Eberemu, Cement modification of tropical black clay using iron ore tailing as admixture, J. Transp. Geotech., 5(2015) 35–49.

DOI: 10.1016/j.trgeo.2015.10.001

Google Scholar

[2] Z. Yu, H. Xinlei, W. Yijie, and J. Ningjun, A critical review of biomineralization in environmental geotechnics: Applications, trends, and perspectives, Biogeotechnics, 1 (2023). 100003.

DOI: 10.1016/j.bgtech.2023.100003

Google Scholar

[3] P. Yohanna, R. K. Etim, N. I. Ekene, et al., Case evaluation of structural strength improvement of cement stabilized lateritic soil reinforced with sisal fibers and plastic waste strips, Discover Civil Engineering, (2024).

DOI: 10.1007/s44290-024-00069-9

Google Scholar

[4] D. A. Rubinos, and G. Spagnoli, Utilization of waste products as alternative landfill liner and cover materials—A critical review, Crit. Rev. Environ. Sci. Technol., (2018).

DOI: 10.1080/10643389.2018.1461495

Google Scholar

[5] R. K. Etim, T. S. Ijimdiya, A. O. Eberemu, and K. J. Osinubi, Compatibility interaction of landfill leachate with lateritic soil bio-treated with Bacillus megaterium: Criterion for barrier material in municipal solid waste containment, Cleaner Materials, 5(2022) 100110.

DOI: 10.1016/j.clema.2022.100110

Google Scholar

[6] H. T. Christensen, P. Kjeldsen, P. L. Bjerg, et al., Biogeochemistry of landfill leachate plumes, J. Appl. Geochem., 16:7–8, (2001) 659–718.

DOI: 10.1016/S0883-2927(00)00082-2

Google Scholar

[7] J. T. DeJong, M. B. Fritzges, and K. Nüsslein, Microbial induced cementation to control sand response to undrained shear, J. Geotech. Geoenviron. Eng., 132, 11(2006) 1381–1392.

DOI: 10.1061/(ASCE)1090-0241(2006)132:11(1381)

Google Scholar

[8] I. Ahenkorah, M. M. Rahman, M. R. Karim, and P. R. Teasdale, A comparison of mechanical responses for microbial and enzyme induced cement sand, Geotechnique Letters, 10, 4(2020) 1–9.

DOI: 10.1680/jgele.20.00061

Google Scholar

[9] T. Xuwen, X. Hongbin, L. Zixiang, et al., Experimental study on the strength characteristics of expansive soils improved by the MICP method, Geofluids, 10 (2022). 3089820.

DOI: 10.1155/2022/3089820

Google Scholar

[10] W. Kangda, W. Shifan, and C. Jian, Mitigation of soil liquefaction using microbial technology: An overview, Biogeotechnics, 1 (2023), 100005.. https://doi.org/10.1016/j.bgtech.2023. 100005.

DOI: 10.1016/j.bgtech.2023.100005

Google Scholar

[11] T. Feng, A. C. Smertenko, and S. K. Hamdan, Microbially induced carbonate precipitation (MICP) for soil strengthening: A comprehensive review, Biogeotechnics, 1, (2023), 100002.

DOI: 10.1016/j.bgtech.2023.100002

Google Scholar

[12] Y. Wang, C. Kapiris, S. Tang, and H. Cheng, Applications of microbial-induced carbonate precipitation: A state-of-the-art review, Biogeotechnics, 1, (2023), 100008.

DOI: 10.1016/j.bgtech.2023.100008

Google Scholar

[13] K. J. Osinubi, P. Yohanna, A. O. Eberemu, and T. S. Ijimdiya, Evaluation of hydraulic conductivity of lateritic soil treated with Bacillus coagulans for use in waste containment applications, in Proc., 8th Int. Congress on Environmental Geotechnics (ICEG 2018), 3, L. Zhan, Y. Chen, and A. Bouazza, Eds., p.401–409, 2019a.

DOI: 10.1007/978-981-13-2227-3_50

Google Scholar

[14] H.T. Christensen, P. Kjeldsen, H. J. Albrechtsen, et al., Attenuation of landfill leachate pollutants in aquifers, Crit. Rev. Environ. Sci. Technol., 24, 2: (1994) 119–202.

DOI: 10.1080/10643389409388463

Google Scholar

[15] K. J. Osinubi, R. J. Oluremi, A. O. Eberemu, and T. S. Ijimdiya, Interaction of landfill leachate with compacted lateritic soil–waste wood ash mixture, Proc. Inst. Civ. Eng. Waste Resour. Manage. 170, 3–4, (2017) 128–138.

DOI: 10.1680/jwarm.17.00012

Google Scholar

[16] K. J. Osinubi, A. O. Eberemu, T. S. Ijimdiya, et al., Review of the use of microorganisms in geotechnical engineering applications, SN Appl. Sci., 2, 207, (2020).

DOI: 10.1007/s42452-020-1974-2

Google Scholar

[17] R. K. Etim, A. O. Eberemu, T. S. Ijimdiya, and K. J. Osinubi, Coupled effect of cementation solution, curing period, moulding water content and compactive effort on strength performance of bio-treated lateritic soil for waste containment application, J. Hazard. Toxic Radioactive Waste, (2023).

DOI: 10.1061/JHTRBP.HZENG-1201

Google Scholar

[18] K. J. Osinubi, A. O. Eberemu, T. S. Ijimdiya, S. E. Yakubu, et al., Volumetric shrinkage of compacted lateritic soil treated with Bacillus pumilus, in Proc. GeoShanghai 2018 Int. Conf.: Geoenvironment and Geohazard, A. Farid and H. Chen, Eds., (2018) 315–324.

DOI: 10.1007/978-981-13-0128-5_36

Google Scholar

[19] K. J. Osinubi, A. O. Eberemu, T. S. Ijimdiya, and P. Yohanna, Interaction of landfill leachate with compacted lateritic soil treated with Bacillus coagulans using microbial-induced calcite precipitation approach, J. Hazard. Toxic Radioactive Waste, (2019b).

DOI: 10.1061/(ASCE)HZ.2153-5515.0000465

Google Scholar

[20] S. Stocks-Fischer, J. K. Galinat, and S. S. Bang, Microbiological precipitation of CaCO₃, Soil Biol. Biochem., 31,11: (1999) 1563–1571.

DOI: 10.1016/s0038-0717(99)00082-6

Google Scholar

[21] BS 1377, Methods of Testing Soils for Civil Engineering Purposes. London: British Standards Institution, (1990).

Google Scholar

[22] K. Rowshanbakhta, M. Khamehchiyana, R. H. Sajedib, and M. R. Nikudela, Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment, Ecol. Eng., 89 (2016) 49–55.

DOI: 10.1016/j.ecoleng.2016.01.010

Google Scholar

[23] S.-G. Choi, S.-S. Park, S. Wu, and J. Chu, Methods for calcium carbonate content measurement of biocemented soils, J. Mater. Civ. Eng., 29, 11 (2017) 06017015.

DOI: 10.1061/(ASCE)MT.1943-5533.0002064

Google Scholar

[24] AASHTO, Guide for Design of Pavement Structures. Washington, DC: American Association of State Highway and Transportation Officials, (1993).

Google Scholar

[25] J. T. DeJong, B. M. Mortensen, B. C. Martinez, and D. C. Nelson, Bio-mediated soil improvement, Ecol. Eng., 36, 2: (2010) 197–210.

DOI: 10.1016/j.ecoleng.2008.12.029

Google Scholar

[26] M. Burbank, T. Weaver, R. Lewis, et al., Geotechnical tests of sands following bioinduced calcite precipitation catalyzed by indigenous bacteria, J. Geotech. Geoenviron. Eng., 139, 6: (2012) 928–936.

DOI: 10.1061/(ASCE)GT.1943-5606.0000781

Google Scholar

[27] S.-G. Choi, K. Wang, and J. Chu, Properties of biocemented, fiber reinforced sand, Constr. Build. Mater., 120, (2016) 623–629.

DOI: 10.1016/j.conbuildmat.2016.05.124

Google Scholar

[28] L. Chi, Y. De, L. Shihui, et al., Improvement of geomechanical properties of bio-remediated Aeolian sand, Geomicrobiol. J., 35, 2: (2017) 132–140.

DOI: 10.1080/01490451.2017.1338798

Google Scholar

[29] F.M. Francisca and D.A. Glatstein, Long-term hydraulic conductivity of compacted soils permeated with landfill leachate, Appl. Clay Sci., 49 (2010). 3:187–193.

DOI: 10.1016/j.clay.2010.05.003

Google Scholar

[30] T. P. Clement, B. S. Hooker, and R. S. Skeen, Macroscopic models for predicting changes in saturated porous media properties caused by microbial growth, Ground Water, 34,. 5: (1996) 934–942.

DOI: 10.1111/j.1745-6584.1996.tb02088.x

Google Scholar

[31] M. Thullner, J. Zeyer, and W. Kinzelbach, Influence of microbial growth on hydraulic properties of pore networks, Transp. Porous Media, 49, 1: (2003) 99–122.

DOI: 10.1023/A:1016030112089

Google Scholar

[32] L. Cheng, R.C. Ralf, and M. A. Shahin, Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation, Can. Geotech. J., 50,(2013) 81–90.

DOI: 10.1139/cgj-2012-0023

Google Scholar

[33] B.P. Naveen, J. Sumalatha, and R. K. Malik, A study on contamination of ground surface water bodies by leachate leakage from a landfill in Bangalore, India, Geo-Engineering, 9, 27, (2018).

DOI: 10.1186/s40703-018-0095-x

Google Scholar

[34] K.S. Layth and A. I. Mohammad, Bio-cementation of sandy soil through bacterial processing to precipitate carbonate, Al-Nahrain J. Eng. Sci., 23,3: (2020) 225–235.

DOI: 10.29194/NJES.23030225

Google Scholar

[35] K.M.N.S. Wani and B.A. Mir, Microbial geo-technology in ground improvement techniques: A comprehensive review, Innov. Infrastruct. Solut., 5, 82, (2020).

DOI: 10.1007/s41062-020-00335-6

Google Scholar

[36] K.M.N.S. Wani and B. A. Mir, An experimental study on the bio-cementation and bio-clogging effect of bacteria in improving weak dredged soils, J. Geotech. Geol. Eng., (2020).

DOI: 10.1007/s10706-020-01494-0

Google Scholar

[37] J.T. DeJong, et al., Biogeochemical processes and geotechnical applications: Progress, opportunities, and challenges, Geotechnique, 63, (2013) 4:287–301.

DOI: 10.1680/geot.SIP13.P.017

Google Scholar