[1]
I. Dincer, C. Acar, Review and evaluation of hydrogen production methods for better sustainability, Int. J. Hydrogen Energy 40 (2015) 11094.
DOI: 10.1016/j.ijhydene.2014.12.035
Google Scholar
[2]
S.Y. Toledo Camacho, A. Rey, M.D. Hernandez–Alonso, J. Llorca, F. Medina, Cabello, S. Contreras Iglesias, Pd/TiO2–WO3 photocatalysts for hydrogen generation from water–methanol mixtures, Appl. Surf. Sci. 455 (2018), 570.
DOI: 10.1016/j.apsusc.2018.05.122
Google Scholar
[3]
I. Ellouzi, A. Bouddouch, B. Bakkiz, A. Benlhachemi, H. Abou Oualid, Glucose-assisted ball milling preparation of silver-doped biphasic TiO2 for efficient photodegradation of rhodamine B: Effect of silver-dopant loading, Chem. Phys. Lett. 770 (2021) 138456.
DOI: 10.1016/j.cplett.2021.138456
Google Scholar
[4]
Y. Li, Y. Feng, H. Bai, J. Liu, D. Hu, J. Fan, H. Shen, Enhanced visible-light photocatalytic performance of black TiO2/SnO2 nanoparticles, J. Alloys Compd. 960 (2023) 170672.
DOI: 10.1016/j.jallcom.2023.170672
Google Scholar
[5]
F. Ban, H.Nun, Q. Jin, Y. Wang, Degradation of phenol by visible light assisted electrocatalytic treatment using N–V co-doped TiO2 as photocatalyst and response surface methodology, Int. J. Electrochem. Sci. 16 (2021) 210648.
DOI: 10.20964/2021.06.17
Google Scholar
[6]
C. Nutescu Duduman, C. Gomez de Castro, G.A. Apostolescu, G. Ciobanu, D. Lutic, L. Favier, M. Harja, Enhancing the TiO2–Ag photocatalytic efficiency by acetone in the dye removal from wastewater, Water 14 (2022) 2711.
DOI: 10.3390/w14172711
Google Scholar
[7]
C. Vanlalhmingmawia, C.M. Lee, D. Tiwari, Plasmonic noble metal doped titanium dioxide nanocomposites: Newer and exciting materials in the remediation of water contaminated with micropollutants, J. Water Proc. Eng. 51 (2023) 103360.
DOI: 10.1016/j.jwpe.2022.103360
Google Scholar
[8]
M.M. Zahornyi, O.M. Lavrynenko, O.F. Kolomys, V.V. Strelchuk, N.I. Tyschenko, O.A. Korniienko, A.I. Ievtushenko, Modern photoactive nanocomposites based on TiO2 and CeO2, J. Nano Electr. Phys. 15 (2023) 04001.
Google Scholar
[9]
M.O. Bello, S. Prabhakar Shelake, N. Abdus–Salam, F.A. Adekola, Ch. Shobha Vennapoosa, A.V. Sesha Sainath, U. Pal, Na–Y zeolite supported TiO2/Pd nanoparticles for enhanced photoredox catalytic properties and green hydrogen generation, Catal. Commun. 186 (2024) 106817.
DOI: 10.1016/j.catcom.2023.106817
Google Scholar
[10]
X. Zhou, D. Chen, T. Li, X. Chen, L. Zhu, Pd and carbon quantum dots co-decorated TiO2 nanosheets for enhanced photocatalytic H2 production and reaction mechanism, Int. J. Hydrogen Energy 53 (2024) 1361.
DOI: 10.1016/j.ijhydene.2023.12.004
Google Scholar
[11]
J. Wang, G. Zhou, R. He, W. Huang, W. Huang, J. Zhu, C. Mao, Ch. Wu, G. Lu, Experimental preparation and optical properties of CeO2/TiO2 heterostructure, J. Mater. Res. Technol. 9 (2020) 9920.
DOI: 10.1016/j.jmrt.2020.06.053
Google Scholar
[12]
J. Hou, H. Yang, B. He, J. Ma, Y. Lu, Q. Wang, High photocatalytic performance of hydrogen evolution and dye degradation enabled by CeO2 modified TiO2 nanotube arrays, Fuel 310-A (2022) 122364.
DOI: 10.1016/j.fuel.2021.122364
Google Scholar
[13]
O.M. Lavrynenko, O.Y. Pavlenko, M.M. Zahornyi, S.F. Korichev, Characteristics of nanostructures formed during the heat treatment of titanium(IV) isopropoxide precipitates in the presence of noble metals, in: IEEE 12th Int. Conf. NAP, 2022, Corpus ID 253461635.
DOI: 10.1109/nap55339.2022.9934132
Google Scholar
[14]
O. Lavrynenko, M. Zahornyi, O. Pavlenko, Some aspects of adsorption, catalytic and photocatalytic interactions of organic dyes with TiO2-based binary nanocomposites, Nano Studies 23/24 (2023–2024) 77.
DOI: 10.52340/ns.2022.23.24.05
Google Scholar
[15]
O.M. Lavrynenko, M.M. Zahornyi, O.Yu. Pavlenko, E. Paineau, Photocatalytic discoloration of organic dyes in water dispersion medium by anatase-based binary nanocomposites, Chem. Phys. Technol. Surf. 15 (2024) 119.
DOI: 10.52340/ns.2022.23.24.05
Google Scholar
[16]
O.M. Lavrynenko, M.M. Zahornyi, E. Paineau, O.Yu. Pavlenko, Synthesis of active binary and ternary TiO2-based nanocomposites for efficient dye photodegradation, Appl. Nanosci. 13 (2023) 7365.
DOI: 10.1007/s13204-023-02909-z
Google Scholar
[17]
O. Lavrynenko, M. Zahornyi, O.Y. Pavlenko, J. Bodin, Y.-D. Quach, M.N. Ghazzal, E. Paineau, Structural properties and photocatalytic activity of TiO2/Au nanocomposite synthesized with glucose, Particle & Particle Syst. Character. 41 (2024) 2400028.
DOI: 10.1002/ppsc.202400028
Google Scholar
[18]
P. Jimemez–Calvo, M.J. Munoz–Batista, M. Isaaks, V. Ramnarain, D. Ihiawakrim, X. Li, M. Angel Munoz–Marquez, G. Teobaldi, M. Kociak, E. Paineau, A compact photoreactor for automated H2 photoproduction: Revisiting the (Pd, Pt, Au)/TiO2(P25) Schottky junctions, Chem. Eng. J. 459 (2023) 141514.
DOI: 10.1016/j.cej.2023.141514
Google Scholar
[19]
B. Rusinque, S. Escobedo, H. de Lasa, Hydrogen production via Pd–TiO2 photocatalytic water splitting under near-UV and visible light: Analysis of the reaction mechanism, Catalysts 11 (2021) 405.
DOI: 10.3390/catal11030405
Google Scholar