Kinetic Regularities of Photocatalytic Destruction of Cationic Dyes and Hydrogen Generation by Anatase-Based Binary Nanocomposites

Article Preview

Abstract:

Kinetic studies of the photocatalytic decomposition of cationic dyes MB (Methylene Blue) and RhB (Rhodamine B), and hydrogen generation from a water–methanol mixture were carried out using nanosized particles of anatase and binary composites based on it with 2 wt.% of palladium or cerium. Nanocomposites were synthesized by a chemical method using TTIP (Titanium TetraIsoPropoxide) in the presence of aqueous salt solutions containing doping metals. The paper briefly describes the structure, morphology, and chemical composition of the anatase-based nanoparticles using modern physical-chemical methods. In the presence of TiO2&Pd particles, the destruction degree of RhB and MB under the UV irradiation during 60 min reached 81.0–85.5%, and in the presence of TiO2&CeO2 particles – 95%. The dye destruction process was accompanied by a hypsochromic shift of chromophoric peaks, which indicated the decomposition products formation. The reactions are pseudo-first order, and the rate constants are within 10-2. Photocatalytic activity for hydrogen generation using UV radiation showed increased activity (H2 3519 μmol·g-1) for TiO2&2wt.%Pd due to the possible penetration of palladium atoms into the anatase lattice with efficient separation of photogenerated charge carriers in this system.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1160)

Pages:

97-105

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Dincer, C. Acar, Review and evaluation of hydrogen production methods for better sustainability, Int. J. Hydrogen Energy 40 (2015) 11094.

DOI: 10.1016/j.ijhydene.2014.12.035

Google Scholar

[2] S.Y. Toledo Camacho, A. Rey, M.D. Hernandez–Alonso, J. Llorca, F. Medina, Cabello, S. Contreras Iglesias, Pd/TiO2–WO3 photocatalysts for hydrogen generation from water–methanol mixtures, Appl. Surf. Sci. 455 (2018), 570.

DOI: 10.1016/j.apsusc.2018.05.122

Google Scholar

[3] I. Ellouzi, A. Bouddouch, B. Bakkiz, A. Benlhachemi, H. Abou Oualid, Glucose-assisted ball milling preparation of silver-doped biphasic TiO2 for efficient photodegradation of rhodamine B: Effect of silver-dopant loading, Chem. Phys. Lett. 770 (2021) 138456.

DOI: 10.1016/j.cplett.2021.138456

Google Scholar

[4] Y. Li, Y. Feng, H. Bai, J. Liu, D. Hu, J. Fan, H. Shen, Enhanced visible-light photocatalytic performance of black TiO2/SnO2 nanoparticles, J. Alloys Compd. 960 (2023) 170672.

DOI: 10.1016/j.jallcom.2023.170672

Google Scholar

[5] F. Ban, H.Nun, Q. Jin, Y. Wang, Degradation of phenol by visible light assisted electrocatalytic treatment using N–V co-doped TiO2 as photocatalyst and response surface methodology, Int. J. Electrochem. Sci. 16 (2021) 210648.

DOI: 10.20964/2021.06.17

Google Scholar

[6] C. Nutescu Duduman, C. Gomez de Castro, G.A. Apostolescu, G. Ciobanu, D. Lutic, L. Favier, M. Harja, Enhancing the TiO2–Ag photocatalytic efficiency by acetone in the dye removal from wastewater, Water 14 (2022) 2711.

DOI: 10.3390/w14172711

Google Scholar

[7] C. Vanlalhmingmawia, C.M. Lee, D. Tiwari, Plasmonic noble metal doped titanium dioxide nanocomposites: Newer and exciting materials in the remediation of water contaminated with micropollutants, J. Water Proc. Eng. 51 (2023) 103360.

DOI: 10.1016/j.jwpe.2022.103360

Google Scholar

[8] M.M. Zahornyi, O.M. Lavrynenko, O.F. Kolomys, V.V. Strelchuk, N.I. Tyschenko, O.A. Korniienko, A.I. Ievtushenko, Modern photoactive nanocomposites based on TiO2 and CeO2, J. Nano Electr. Phys. 15 (2023) 04001.

Google Scholar

[9] M.O. Bello, S. Prabhakar Shelake, N. Abdus–Salam, F.A. Adekola, Ch. Shobha Vennapoosa, A.V. Sesha Sainath, U. Pal, Na–Y zeolite supported TiO2/Pd nanoparticles for enhanced photoredox catalytic properties and green hydrogen generation, Catal. Commun. 186 (2024) 106817.

DOI: 10.1016/j.catcom.2023.106817

Google Scholar

[10] X. Zhou, D. Chen, T. Li, X. Chen, L. Zhu, Pd and carbon quantum dots co-decorated TiO2 nanosheets for enhanced photocatalytic H2 production and reaction mechanism, Int. J. Hydrogen Energy 53 (2024) 1361.

DOI: 10.1016/j.ijhydene.2023.12.004

Google Scholar

[11] J. Wang, G. Zhou, R. He, W. Huang, W. Huang, J. Zhu, C. Mao, Ch. Wu, G. Lu, Experimental preparation and optical properties of CeO2/TiO2 heterostructure, J. Mater. Res. Technol. 9 (2020) 9920.

DOI: 10.1016/j.jmrt.2020.06.053

Google Scholar

[12] J. Hou, H. Yang, B. He, J. Ma, Y. Lu, Q. Wang, High photocatalytic performance of hydrogen evolution and dye degradation enabled by CeO2 modified TiO2 nanotube arrays, Fuel 310-A (2022) 122364.

DOI: 10.1016/j.fuel.2021.122364

Google Scholar

[13] O.M. Lavrynenko, O.Y. Pavlenko, M.M. Zahornyi, S.F. Korichev, Characteristics of nanostructures formed during the heat treatment of titanium(IV) isopropoxide precipitates in the presence of noble metals, in: IEEE 12th Int. Conf. NAP, 2022, Corpus ID 253461635.

DOI: 10.1109/nap55339.2022.9934132

Google Scholar

[14] O. Lavrynenko, M. Zahornyi, O. Pavlenko, Some aspects of adsorption, catalytic and photocatalytic interactions of organic dyes with TiO2-based binary nanocomposites, Nano Studies 23/24 (2023–2024) 77.

DOI: 10.52340/ns.2022.23.24.05

Google Scholar

[15] O.M. Lavrynenko, M.M. Zahornyi, O.Yu. Pavlenko, E. Paineau, Photocatalytic discoloration of organic dyes in water dispersion medium by anatase-based binary nanocomposites, Chem. Phys. Technol. Surf. 15 (2024) 119.

DOI: 10.52340/ns.2022.23.24.05

Google Scholar

[16] O.M. Lavrynenko, M.M. Zahornyi, E. Paineau, O.Yu. Pavlenko, Synthesis of active binary and ternary TiO2-based nanocomposites for efficient dye photodegradation, Appl. Nanosci. 13 (2023) 7365.

DOI: 10.1007/s13204-023-02909-z

Google Scholar

[17] O. Lavrynenko, M. Zahornyi, O.Y. Pavlenko, J. Bodin, Y.-D. Quach, M.N. Ghazzal, E. Paineau, Structural properties and photocatalytic activity of TiO2/Au nanocomposite synthesized with glucose, Particle & Particle Syst. Character. 41 (2024) 2400028.

DOI: 10.1002/ppsc.202400028

Google Scholar

[18] P. Jimemez–Calvo, M.J. Munoz–Batista, M. Isaaks, V. Ramnarain, D. Ihiawakrim, X. Li, M. Angel Munoz–Marquez, G. Teobaldi, M. Kociak, E. Paineau, A compact photoreactor for automated H2 photoproduction: Revisiting the (Pd, Pt, Au)/TiO2(P25) Schottky junctions, Chem. Eng. J. 459 (2023) 141514.

DOI: 10.1016/j.cej.2023.141514

Google Scholar

[19] B. Rusinque, S. Escobedo, H. de Lasa, Hydrogen production via Pd–TiO2 photocatalytic water splitting under near-UV and visible light: Analysis of the reaction mechanism, Catalysts 11 (2021) 405.

DOI: 10.3390/catal11030405

Google Scholar