[1]
Idowu, A. A., Ayoola, S. O., Opele, A. I., and Ikenweiwe, N. B. (2011). Impact of climate change in Nigeria. Iranica J Energy Environ 2 (2): 145–152.
Google Scholar
[2]
Pravin, S. N. K., Murali, K., and Shanmugapriyan, M. R. (2017). Review On Climate Change and Its Effects on Construction Industry. International Research Journal of Engineering and Technology. www.irjet.net
Google Scholar
[3]
Odjugo, P. A. (2010). Regional evidence of climate change in Nigeria. Journal of geography and regional planning, 3(6), 142-150.
Google Scholar
[4]
Ede, A.N., Adeyemi, K.K., Joshua, O., (2013). Effects of climate change on built environment in Lagos, Nigeria. Int. J. Engin. Technol. Comp. Res. 3 (2), 14–22
Google Scholar
[5]
Iheama, N. B., Okoli, K. C., and Onwuka, S. U. (2019). Effects of climate change on building construction and maintenance cost in Enugu state, Nigeria. Environmental Review, 6(2).
Google Scholar
[6]
Navrátilová, E., and Rovnaníková, P. (2016). Pozzolanic properties of brick powders and their effect on the properties of modified lime mortars. In Construction and Building Materials (Vol. 120, p.530–539). Elsevier Ltd
DOI: 10.1016/j.conbuildmat.2016.05.062
Google Scholar
[7]
Xue, C., Qiao, H., Cao, H., Feng, Q., and Li, Q. (2021). Analysis on the Strength of Cement Mortar Mixed with Construction Waste Brick Powder. Advances in Civil Engineering, 2021
DOI: 10.1155/2021/8871280
Google Scholar
[8]
O'Farrell, M., Wild S., and Sabir B. (2001) Pore size distribution and compressive strength of waste clay brick mortar Cement and Concrete Composites 23 81–91
DOI: 10.1016/s0958-9465(00)00070-6
Google Scholar
[9]
Lam, M. N. T., Nguyen, D. T., and Nguyen, D. L. (2021). Potential use of clay brick waste powder and ceramic waste aggregate in mortar. Construction and Building Materials, 313
DOI: 10.1016/j.conbuildmat.2021.125516
Google Scholar
[10]
Ortega, J. M., Letelier, V., Solas, C., Moriconi, G., Climent, M. Á., and Sánchez, I. (2018). Long-term effects of waste brick powder addition in the microstructure and service properties of mortars. Construction and Building Materials, 182, 691-702.
DOI: 10.1016/j.conbuildmat.2018.06.161
Google Scholar
[11]
Singh, N., and Garg, M. (2006). Reactive pozzolana from Indian clays—their use in cement mortars. Cement and concrete research, 36(10), 1903-1907.
DOI: 10.1016/j.cemconres.2004.12.002
Google Scholar
[12]
Gonçalves J. P., Tavares L. M., Toledo Filho R. D., and Fairbairn E. M. R., "Performance evaluation of cement mortars modified with metakaolin or ground brick," Construction and Building Materials, vol. 23, no. 5, p.1971–1979, 2009.
DOI: 10.1016/j.conbuildmat.2008.08.027
Google Scholar
[13]
BS EN 1377 (1990): Method of Test for Civil Engineering Purposes. British Standards Institution, London
Google Scholar
[14]
NIS 444, part 1. (2003). Composition, specifications and conformity criteria for common cements. Nigeria Industrial Standards Center, Nigeria.
Google Scholar
[15]
ASTM C33/C33M. (2018). Standard Specification for Concrete Aggregates. American Society for Testing and Materials Standards, 1–8
DOI: 10.1520/C0033
Google Scholar
[16]
BS EN 1008. (2002). Specification for sampling, testing and assessing the suitability of water, including water recovered from processes in the concrete industry, as mixing water for concrete. BSI Standards Publication, 1–13.
DOI: 10.3403/02609198u
Google Scholar
[17]
NIS 87 (2007). Nigerian Industrial Standard: Standard for Sandcrete Blocks. Standard Organization of Nigeria, Lagos, Nigeria.
Google Scholar
[18]
Yiosese, A. O. (2021). Quality Assessment of Sandcrete Blocks Produced Along-Oke Fomo Area, Ilorin, Kwara State. LAUTECH Journal of Civil and Environmental Studies, 7(1)
DOI: 10.36108/laujoces/1202.70.0111
Google Scholar
[19]
ASTM C1585. (2013). Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes. American Society for Testing and Materials Standards, 41(147), 1–6
DOI: 10.1520/C1585-13
Google Scholar
[20]
Quadri, A. I., and Abdulhameed, M. (n.d.). Assessment Of Selected Engineering Properties of Sandcrete Blocks from Akinyele Local Government Area, Oyo State. 3(2), 43–53. www.ajerd.abuad.edu.ng/43
Google Scholar
[21]
Hendry, A. W., and Khalaf, F. M., (2001). Masonry Wall Construction. Taylor and Francis Group, Spon Press London, and New York.
Google Scholar
[22]
Cultrone, G., Sebastián E., Elert K., de la Torre M. J., Cazalla O., and Rodriguez– Navarro C. (2004). Influence of mineralogy and firing temperature on the porosity of bricks, J Euro. Ceram. Soc., 24, 547-564.
DOI: 10.1016/s0955-2219(03)00249-8
Google Scholar
[23]
Faisal, N. A. A., Ghani, A. N. A., and Salim, N. A. A. (2018). The ability of wall openings to reduce flood induced forces on residential building. International Journal of GEOMATE, 14(46), 63–69
DOI: 10.21660/2018.46.7306
Google Scholar
[24]
BS EN 196-3. (2016). Determination of setting time and soundness. British Standards Institute.
Google Scholar
[25]
BS EN 196-6. (2018). Methods of testing cement; Determination of fineness. BSI Standard Limited.
Google Scholar
[26]
ASTM C618-19, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, American Society of Testing Materials, West Conshohocken, PA, USA, (2019)
DOI: 10.1520/c0618-22
Google Scholar
[27]
Wang, H., Wu, H., Xing, Z., Wang, R., and Dai, S. (2021). The Effect of Various Si_Al, Na_Al Molar Ratios and Free Water on Micromorphology and Macro-Strength of Metakaolin-Based Geopolymer. Materials, 14(3845).
DOI: 10.3390/ma14143845
Google Scholar
[28]
Tironi, A., Trezza, M. A., Scian, A. N., and Irassar, E. F. (2012). Incorporation of Calcined Clays in Mortars: Porous Structure and Compressive Strength. Procedia Materials Science, 1, 366–373
DOI: 10.1016/j.mspro.2012.06.049
Google Scholar
[29]
Singh, N. (2018). Effects of Replacement of Sand by Brick Kiln Burnt Dust in Mortar: A Comprehensive Study. Journal of Research in Civil and Architectural Engineering, 3(2), 1–7.
Google Scholar
[30]
Kwaghgba, G., Shedrack, J. A., and Uvirsue, I. H. (2019). Partial Replacement of Clay With River Sand in the Production of Burnt Clay Bricks. Globa Scientific Journal, 7(4), 242–254. www.globalscientificjournal.com
Google Scholar
[31]
Zhu, L., and Zhu, Z. (2020). Reuse of clay brick waste in mortar and concrete. Advances in Materials Science and Engineering, 2020.
DOI: 10.1155/2020/6326178
Google Scholar
[32]
Mohan, M., Apurva, A., Kumar, N., and Ojha, A. (2020). A Review on Use of Crushed Brick Powder as a Supplementary Cementitious Material. IOP Conference Series: Materials Science and Engineering, 936(1)
DOI: 10.1088/1757-899X/936/1/012001
Google Scholar
[33]
Witzany, J., Cejka, T., and Zigler, R. (2010). The Effect of Moisture on Significant Mechanical Characteristics of Masonry. Statybinės Konstrukcijos Ir Technologijos, 2(3), 79–85
DOI: 10.3846/skt.2010.11
Google Scholar
[34]
Franzoni, E., Gentilini, C., Graziani, G., and Bandini, S. (2015). Compressive behaviour of brick masonry triplets in wet and dry conditions. Construction and Building Materials, 82, 45–52
DOI: 10.1016/j.conbuildmat.2015.02.052
Google Scholar
[35]
Sathiparan, N., and Rumeshkumar, U. (2018). Effect of moisture condition on mechanical behavior of low strength brick masonry. Journal of Building Engineering, 17(November 2017), 23–31
DOI: 10.1016/j.jobe.2018.01.015
Google Scholar