Structure and Properties of Ternary Photocatalysts Based on Titanium Dioxide Nanoparticles Modified with Silver and Cerium

Article Preview

Abstract:

In this work, photoelectron nanocomposites of TiO2&CeO2&Ag were synthesized by a co-deposition method using TTIP (Titanium TetraIsoPropoxide) and water solutions of Ce(NO3)3 and AgNO3. Heat treatment of the precipitates at 600°C led to the formation of an anatase phase with the primary particles’ size of 14.1–15.2 nm. Molecules of Malachite green and Methylene blue are intensively adsorbed on the surface of nanocomposites. TiO2&CeO2&Ag nanocomposites show high photocatalytic activity to cationic dyes and weak – to anionic ones. The photocatalytic decomposition of cationic dyes is accompanied by a hypsochromic shift of chromophoric bands. Only the chromophoric part of the dye molecules is destroyed by temperature (catalytic process). Nanocomposites based on anatase containing 1–2 wt.% of Ag and Ce show the highest photocatalytic activity for the destruction of organic dyes.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1160)

Pages:

85-96

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Jimemez–Calvo, M.J. Munoz–Batista, M. Isaaks, V. Ramnarain, D. Ihiawakrim, X. Li, M. Angel Munoz–Marquez, G. Teobaldi, M. Kociak, E. Paineau, A compact photoreactor for automated H2 photoproducion: Revisiting the (Pd, Pt, Au)/TiO2 (P25) Schottky junctions, Chem. Eng. J. 459 (2023) 141514.

DOI: 10.1016/j.cej.2023.141514

Google Scholar

[2] R.S. Dubey, S.R. Jadkar, A.B. Bhorde, Synthesis and characterization of various doped TiO2 nanocrystals for dye-sensitized solar cells, ACS Omega 6 (2021) 3470.

DOI: 10.1021/acsomega.0c01614

Google Scholar

[3] A.A. Haidry, W. Yucheng, Q. Fatima, A. Raza, L. Zhong, H. Chen, C. Rutendo Mandebvu, F. Ghani, Synthesis and characterization of TiO2 nanomaterials for sensing environmental volatile compounds (VOCs): A review, TrAC Trends Anal. Chem. 170 (2024) 11745

DOI: 10.1016/j.trac.2023.117454

Google Scholar

[4] N. Madkhali, Ch. Prasad, K. Malkappa, H.Y. Choi, V. Govinda, I. Bahadur, R.A. Abumousa, Recent update on photocatalytic degradation of pollutants in waste water using TiO2-based heterostructured materials, Results Eng. 17 (2023) 100920.

DOI: 10.1016/j.rineng.2023.100920

Google Scholar

[5] J. Ma, L. Zhang, Zh. Fan, S. Sun, Z. Feng, W. Li, H. Ding, Construction of R-TiO2/n-TiO2 heterophase photocatalysts for efficient degradation of organic pollutants, J. Alloys Compd. 968 (2023) 172127.

DOI: 10.1016/j.jallcom.2023.172127

Google Scholar

[6] N.C. Joshi, P. Gururani, S.P. Gairola, Metal oxide nanoparticles and their nanocomposite-based materials as photocatalysts in the degradation of dyes, Biointerf. Res. Appl. Chem. 12 (2022) 6557.

DOI: 10.33263/briac125.65576579

Google Scholar

[7] S.M. Gupta, M. Tripathi, A review on the synthesis of TiO2 nanoparticles by solution route, Cent. Eur. J. Chem. 10 (2012) 279.

Google Scholar

[8] A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C1 (2000) 1.

Google Scholar

[9] L. Kernazhitsky, V. Shymanovska, T. Gavrilko, V. Naumov, V. Kshnyakin, Optical absorption of polydisperse TiO2: Effect of surface doping by transition metal cations, Ukr. J. Phys. Opt. 14 (2012) 15.

DOI: 10.3116/16091833/14/1/15/2013

Google Scholar

[10] N. Chorna, N. Smirnova, V. Vorobets, G. Kolbasov, O. Linnik, Nitrogen doped iron titanate films: Photoelectrochemical, electrocatalytic, photocatalytic and structural features, Appl. Surf. Sci. 473 (2019) 3430351.

DOI: 10.1016/j.apsusc.2018.12.154

Google Scholar

[11] P. Ribao, M. J. Rivero, I. Ortiz, TiO2 structures doped with noble metals and/or graphene oxide to improve the photocatalytic degradation of dichloroacetic acid, Environ. Sci. Pollut. Res. 24 (2017) 12628.

DOI: 10.1007/s11356-016-7714-x

Google Scholar

[12] D.R. Eddy, M.D. Permana, L.K. Sakti, G.A.N. Sheha, Solihudin, S. Hidayat, T. Takei, N. Kumada, I. Rahayu, Heterophase polymorph of TiO2 (anatase, rutile, brookite, TiO2 (B)) for efficient photocatalyst: Fabrication and activity, Nanomater. 13 (2023) 704.

DOI: 10.3390/nano13040704

Google Scholar

[13] J. Wang, Zh. Wang, W. Wang, Y. Wang, X. Hu, J. Liu, X. Gong, W. Miao, L. Ding, X. Li, J. Tang, Synthesis, modification and application of titanium dioxide nanoparticles: A review, Nanoscale 14 (2022) 6709.

DOI: 10.1039/d1nr08349j

Google Scholar

[14] M.K. Seery, R. George, P. Floris, S.C. Pillai, Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis, J. Photochem. Photobiol. A189 (2007) 258.

DOI: 10.1016/j.jphotochem.2007.02.010

Google Scholar

[15] J. Wang, F. Meng, W. Xie, Ch. Gao, Y. Zha, D. Liu, P. Wang, TiO2/CeO2 composite catalysts: Synthesis, characterization and mechanism analysis, Appl. Phys. A124 (2018) 645.

DOI: 10.1007/s00339-018-2027-1

Google Scholar

[16] I.T. Weber, A. Valentini, L.F.D. Probst, E. Longo, E.R. Leite, Influence of noble metals on the structural and catalytic properties of Ce-doped SnO2 systems, Sens. Actuat. B97 (2004) 31.

DOI: 10.1016/s0925-4005(03)00577-x

Google Scholar

[17] M. Khairy, E.M. Kamar, M. Yehia, E.M. Masoud, High removal efficiency of methyl orange dye by pure and (Cu, N) doped TiO2/polyaniline nanocomposites, Biointerf. Res. Appl. Chem. 12 (2022) 893.

DOI: 10.33263/briac121.893909

Google Scholar

[18] P. Bera, M.S. Hegde, Noble metal ions in CeO2 and TiO2: Synthesis, structure and catalytic properties, RSC Adv. 5 (2015) 94949.

DOI: 10.1039/c5ra16474e

Google Scholar

[19] M.J. Kim, G.-H. Han, S.H. Lee, H.W. Jung, J.W. Choung, Ch.H. Kim, K.-Y. Lee, CeO2 promoted Ag/TiO2 catalyst for soot oxidation with improved active oxygen generation and delivery abilities, J. Hazard. Mater. 384 (2020) 121341.

DOI: 10.1016/j.jhazmat.2019.121341

Google Scholar

[20] O. M. Lavrynenko, M. M. Zahornyi, E. Paineau, O.Yu. Pavlenko, Synthesis of active binary and ternary TiO2-based nanocomposites for efficient dye photodegradation, Appl. Nanosci. 13 (2023) 7365.

DOI: 10.1007/s13204-023-02909-z

Google Scholar

[21] O.M. Lavrynenko, M.M. Zahornyi, O.Yu. Pavlenko, E. Paineau, Photocatalytic discoloration of organic dyes in water dispersion medium by anatase-based binary nanocomposites, Chem. Phys. Technol. Surf. 15 (2024) 119.

DOI: 10.52340/ns.2022.23.24.05

Google Scholar

[22] O.M. Lavrynenko, M.M. Zahornyi, O.Y. Pavlenko, A.I. Bykov, Structure and thermal behavior of CeO2 and TiO2 nanopowders doped with noble metals, Appl. Nanosci. 13 (2022) 5115.

DOI: 10.1007/s13204-022-02706-0

Google Scholar

[23] O.M. Lavrynenko, O.Yu. Pavlenko, M.N. Zahornyi, S.F. Korichev, Morphology, phase and chemical composition of the nanostructures formed in the systems containing lanthanum, cerium, and silver, Chem. Phys. Technol. Surf. 12 (2021) 382.

Google Scholar

[24] O.M. Lavrynenko, M.M. Zahornyi, O.Y. Pavlenko, N.I. Tyschenko, O.I. Bykov, Comparative analysis of CeO2&Ag0 and TiO2&Ag0 nanoparticles formed under the co-precipitation, in: IEEE 11th Int. Conf. NAP, 2021, NSS10.

DOI: 10.1109/nap51885.2021.9568577

Google Scholar

[25] K. Kotlhao, F.M. Mtunzi, V. Pakade, I.P. Ejidike, M.J. Klink, Synthesis, characterization and evaluation of Ag–TiO2 nanocomposites for photo-catalytic degradation of selected chlorophenols, Digest J. Nanomater. Biostruc. 13 (2018) 835.

DOI: 10.1557/adv.2018.170

Google Scholar

[26] S. Song, C. Hao, X. Zhang, Q. Zhang, R. Sun, Sonocatalytic degradation of methyl orange in aqueous solution using Fe-doped TiO2 nanoparticles under mechanical agitation, Open Chem. 16 (2018) 1283.

DOI: 10.1515/chem-2018-0137

Google Scholar

[27] P. Philip, T. Jose, J. Prakash, S.K. Cherian, Surface Plasmon resonance-enhanced bathochromic-shifted photoluminescent properties of pure and structurally modified electrospun poly(methyl methacrylate) (PMMA) nanofibers incorporated with green-synthesized silver nanoparticles, J. Electron. Mater. 50 (2021) 4834.

DOI: 10.1007/s11664-021-09003-6

Google Scholar

[28] O. Lavrynenko, M. Zahornyi, O. Pavlenko, Some aspects of adsorption, catalytic and photocatalytic interactions of organic dyes with TiO2-based binary nanocomposites, Nano Studies 23/24 (2023–2024) 77-98.

DOI: 10.52340/ns.2022.23.24.05

Google Scholar

[29] R.S. Varma, B. Baruwati, J. Virkutyte, Doped titanium dioxide as a visible and sun light photo catalyst, Patent US 8,791,044 B2 (2014).

Google Scholar

[30] G.B. Vieira, H.J. Jose, M. Peterson, CeO2/TiO2 nanostructures enhance adsorption and photocatalytic degradation of organic compounds in aqueous suspension, J. Photochem. Photobiol., A353 (2018) 325.

DOI: 10.1016/j.jphotochem.2017.11.045

Google Scholar