[1]
P. Jimemez–Calvo, M.J. Munoz–Batista, M. Isaaks, V. Ramnarain, D. Ihiawakrim, X. Li, M. Angel Munoz–Marquez, G. Teobaldi, M. Kociak, E. Paineau, A compact photoreactor for automated H2 photoproducion: Revisiting the (Pd, Pt, Au)/TiO2 (P25) Schottky junctions, Chem. Eng. J. 459 (2023) 141514.
DOI: 10.1016/j.cej.2023.141514
Google Scholar
[2]
R.S. Dubey, S.R. Jadkar, A.B. Bhorde, Synthesis and characterization of various doped TiO2 nanocrystals for dye-sensitized solar cells, ACS Omega 6 (2021) 3470.
DOI: 10.1021/acsomega.0c01614
Google Scholar
[3]
A.A. Haidry, W. Yucheng, Q. Fatima, A. Raza, L. Zhong, H. Chen, C. Rutendo Mandebvu, F. Ghani, Synthesis and characterization of TiO2 nanomaterials for sensing environmental volatile compounds (VOCs): A review, TrAC Trends Anal. Chem. 170 (2024) 11745
DOI: 10.1016/j.trac.2023.117454
Google Scholar
[4]
N. Madkhali, Ch. Prasad, K. Malkappa, H.Y. Choi, V. Govinda, I. Bahadur, R.A. Abumousa, Recent update on photocatalytic degradation of pollutants in waste water using TiO2-based heterostructured materials, Results Eng. 17 (2023) 100920.
DOI: 10.1016/j.rineng.2023.100920
Google Scholar
[5]
J. Ma, L. Zhang, Zh. Fan, S. Sun, Z. Feng, W. Li, H. Ding, Construction of R-TiO2/n-TiO2 heterophase photocatalysts for efficient degradation of organic pollutants, J. Alloys Compd. 968 (2023) 172127.
DOI: 10.1016/j.jallcom.2023.172127
Google Scholar
[6]
N.C. Joshi, P. Gururani, S.P. Gairola, Metal oxide nanoparticles and their nanocomposite-based materials as photocatalysts in the degradation of dyes, Biointerf. Res. Appl. Chem. 12 (2022) 6557.
DOI: 10.33263/briac125.65576579
Google Scholar
[7]
S.M. Gupta, M. Tripathi, A review on the synthesis of TiO2 nanoparticles by solution route, Cent. Eur. J. Chem. 10 (2012) 279.
Google Scholar
[8]
A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C1 (2000) 1.
Google Scholar
[9]
L. Kernazhitsky, V. Shymanovska, T. Gavrilko, V. Naumov, V. Kshnyakin, Optical absorption of polydisperse TiO2: Effect of surface doping by transition metal cations, Ukr. J. Phys. Opt. 14 (2012) 15.
DOI: 10.3116/16091833/14/1/15/2013
Google Scholar
[10]
N. Chorna, N. Smirnova, V. Vorobets, G. Kolbasov, O. Linnik, Nitrogen doped iron titanate films: Photoelectrochemical, electrocatalytic, photocatalytic and structural features, Appl. Surf. Sci. 473 (2019) 3430351.
DOI: 10.1016/j.apsusc.2018.12.154
Google Scholar
[11]
P. Ribao, M. J. Rivero, I. Ortiz, TiO2 structures doped with noble metals and/or graphene oxide to improve the photocatalytic degradation of dichloroacetic acid, Environ. Sci. Pollut. Res. 24 (2017) 12628.
DOI: 10.1007/s11356-016-7714-x
Google Scholar
[12]
D.R. Eddy, M.D. Permana, L.K. Sakti, G.A.N. Sheha, Solihudin, S. Hidayat, T. Takei, N. Kumada, I. Rahayu, Heterophase polymorph of TiO2 (anatase, rutile, brookite, TiO2 (B)) for efficient photocatalyst: Fabrication and activity, Nanomater. 13 (2023) 704.
DOI: 10.3390/nano13040704
Google Scholar
[13]
J. Wang, Zh. Wang, W. Wang, Y. Wang, X. Hu, J. Liu, X. Gong, W. Miao, L. Ding, X. Li, J. Tang, Synthesis, modification and application of titanium dioxide nanoparticles: A review, Nanoscale 14 (2022) 6709.
DOI: 10.1039/d1nr08349j
Google Scholar
[14]
M.K. Seery, R. George, P. Floris, S.C. Pillai, Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis, J. Photochem. Photobiol. A189 (2007) 258.
DOI: 10.1016/j.jphotochem.2007.02.010
Google Scholar
[15]
J. Wang, F. Meng, W. Xie, Ch. Gao, Y. Zha, D. Liu, P. Wang, TiO2/CeO2 composite catalysts: Synthesis, characterization and mechanism analysis, Appl. Phys. A124 (2018) 645.
DOI: 10.1007/s00339-018-2027-1
Google Scholar
[16]
I.T. Weber, A. Valentini, L.F.D. Probst, E. Longo, E.R. Leite, Influence of noble metals on the structural and catalytic properties of Ce-doped SnO2 systems, Sens. Actuat. B97 (2004) 31.
DOI: 10.1016/s0925-4005(03)00577-x
Google Scholar
[17]
M. Khairy, E.M. Kamar, M. Yehia, E.M. Masoud, High removal efficiency of methyl orange dye by pure and (Cu, N) doped TiO2/polyaniline nanocomposites, Biointerf. Res. Appl. Chem. 12 (2022) 893.
DOI: 10.33263/briac121.893909
Google Scholar
[18]
P. Bera, M.S. Hegde, Noble metal ions in CeO2 and TiO2: Synthesis, structure and catalytic properties, RSC Adv. 5 (2015) 94949.
DOI: 10.1039/c5ra16474e
Google Scholar
[19]
M.J. Kim, G.-H. Han, S.H. Lee, H.W. Jung, J.W. Choung, Ch.H. Kim, K.-Y. Lee, CeO2 promoted Ag/TiO2 catalyst for soot oxidation with improved active oxygen generation and delivery abilities, J. Hazard. Mater. 384 (2020) 121341.
DOI: 10.1016/j.jhazmat.2019.121341
Google Scholar
[20]
O. M. Lavrynenko, M. M. Zahornyi, E. Paineau, O.Yu. Pavlenko, Synthesis of active binary and ternary TiO2-based nanocomposites for efficient dye photodegradation, Appl. Nanosci. 13 (2023) 7365.
DOI: 10.1007/s13204-023-02909-z
Google Scholar
[21]
O.M. Lavrynenko, M.M. Zahornyi, O.Yu. Pavlenko, E. Paineau, Photocatalytic discoloration of organic dyes in water dispersion medium by anatase-based binary nanocomposites, Chem. Phys. Technol. Surf. 15 (2024) 119.
DOI: 10.52340/ns.2022.23.24.05
Google Scholar
[22]
O.M. Lavrynenko, M.M. Zahornyi, O.Y. Pavlenko, A.I. Bykov, Structure and thermal behavior of CeO2 and TiO2 nanopowders doped with noble metals, Appl. Nanosci. 13 (2022) 5115.
DOI: 10.1007/s13204-022-02706-0
Google Scholar
[23]
O.M. Lavrynenko, O.Yu. Pavlenko, M.N. Zahornyi, S.F. Korichev, Morphology, phase and chemical composition of the nanostructures formed in the systems containing lanthanum, cerium, and silver, Chem. Phys. Technol. Surf. 12 (2021) 382.
Google Scholar
[24]
O.M. Lavrynenko, M.M. Zahornyi, O.Y. Pavlenko, N.I. Tyschenko, O.I. Bykov, Comparative analysis of CeO2&Ag0 and TiO2&Ag0 nanoparticles formed under the co-precipitation, in: IEEE 11th Int. Conf. NAP, 2021, NSS10.
DOI: 10.1109/nap51885.2021.9568577
Google Scholar
[25]
K. Kotlhao, F.M. Mtunzi, V. Pakade, I.P. Ejidike, M.J. Klink, Synthesis, characterization and evaluation of Ag–TiO2 nanocomposites for photo-catalytic degradation of selected chlorophenols, Digest J. Nanomater. Biostruc. 13 (2018) 835.
DOI: 10.1557/adv.2018.170
Google Scholar
[26]
S. Song, C. Hao, X. Zhang, Q. Zhang, R. Sun, Sonocatalytic degradation of methyl orange in aqueous solution using Fe-doped TiO2 nanoparticles under mechanical agitation, Open Chem. 16 (2018) 1283.
DOI: 10.1515/chem-2018-0137
Google Scholar
[27]
P. Philip, T. Jose, J. Prakash, S.K. Cherian, Surface Plasmon resonance-enhanced bathochromic-shifted photoluminescent properties of pure and structurally modified electrospun poly(methyl methacrylate) (PMMA) nanofibers incorporated with green-synthesized silver nanoparticles, J. Electron. Mater. 50 (2021) 4834.
DOI: 10.1007/s11664-021-09003-6
Google Scholar
[28]
O. Lavrynenko, M. Zahornyi, O. Pavlenko, Some aspects of adsorption, catalytic and photocatalytic interactions of organic dyes with TiO2-based binary nanocomposites, Nano Studies 23/24 (2023–2024) 77-98.
DOI: 10.52340/ns.2022.23.24.05
Google Scholar
[29]
R.S. Varma, B. Baruwati, J. Virkutyte, Doped titanium dioxide as a visible and sun light photo catalyst, Patent US 8,791,044 B2 (2014).
Google Scholar
[30]
G.B. Vieira, H.J. Jose, M. Peterson, CeO2/TiO2 nanostructures enhance adsorption and photocatalytic degradation of organic compounds in aqueous suspension, J. Photochem. Photobiol., A353 (2018) 325.
DOI: 10.1016/j.jphotochem.2017.11.045
Google Scholar