Influence of Carbon Content on the Strengthening Characteristics of Steels during AFSH

Article Preview

Abstract:

The article considers the features of heat treatment of steels, includes quenching, phase transformations and their influence on the structure and properties of the material. The key parameters of heat treatment are described: heating temperature, holding time and cooling rate, as well as their role in forming the required mechanical characteristics of steel. Phase diagrams are considered, in particular for the "iron-carbon" system, and their significance for choosing processing modes. Additional friction-strain hardening (AFSH) of various steel grades (20, 45, U7, U12) after preliminary quenching and low-temperature tempering is studied. An analysis of microstructural changes and microhardness of surface layers after AFSH is carried out, which confirmed the effectiveness of additional hardening. It was found that steels with a higher carbon content, limited to 0.8 %, demonstrate a greater depth of the hardened layer and higher microhardness values, which determines their feasibility for use in conditions of increased wear. The results of the study emphasize the importance of choosing the optimal AFSH mode depending on the carbon content in the steel, which has a significant impact on the formation of the strength characteristics of the material.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1163)

Pages:

11-18

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.S. Dyachenko, I.V. Doshchechkina, A.O. Movlyan, E.I. Pleshakov, Materialoznavstvo: Pidruchnyk, Kharkiv, KHNADU, 2007, 440 s.

Google Scholar

[2] A.M. Dolzhansʹkyy, O.S. Maksakova, K.O. Chornoivanenko ta in., Tekhnichne rehulyuvannya ta kontrolʹ na pidpryyemstvi: pidruchnyk, Dnipro, Svidler, 2023, 632 s.

Google Scholar

[3] J.W.D. Callister, D.G. Rethwisch, Materials science and engineering: an introduction. John wiley & sons, 2020.

Google Scholar

[4] P. Śliwiński, M.S. Węglowski, K. Kwieciński, A. Wieczorek, Electron beam surface hardening. Biuletyn Instytutu Spawalnictwa w Gliwicach, (2022) 66.

DOI: 10.17729/ebis.2022.1/1

Google Scholar

[5] T. Burakowski, T. Wierzchoń, Inżynieria Powierzchni Metali. Wydawnictwo Naukowo-Techniczne, Warszawa, 1995.

Google Scholar

[6] L.A. Dobrzański, Materiały inżyniersk- ie i projektowanie materiałowe. Podstawy nauki o materiałach i metaloznawstwo. Wydawnictwo Naukowo-Techniczne, Warszawa, 2006.

Google Scholar

[7] I. Nowotyńska, S. Kut, Wybrane meto dy obróbki powierzchni narzędzi do for- mowania metali. Logistyka, (2014) 6.

Google Scholar

[8] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Obróbka powierzchni materiałów inżynierskich. Open Access Library. 5 (2011).

Google Scholar

[9] A.K. Lakshminarayanan, V. Balasubramanian, Understanding the parameters controlling friction stir welding of AISI 409M ferritic stainless steel. Metals and materials international. 17(6) (2011) 969–981.

DOI: 10.1007/s12540-011-6016-6

Google Scholar

[10] I. Galvao, R.M. Leal, A. Loureiro, Influence of tool shoulder geometry on properties of friction stir welds thin copper sheets. Journal of materials processing technology. 213(2) (2013) 129–135.

DOI: 10.1016/j.jmatprotec.2012.09.016

Google Scholar

[11] N. Rajamanickam, V. Balusamy, G. Magudeeswaran, K. Natarajan, Effect of process parameters on thermal history and mechanical properties of friction stir welds. Materials & Design. 30(7) (2009) 2726–2731.

DOI: 10.1016/j.matdes.2008.09.035

Google Scholar

[12] A. Momeni, H. Arabi, A. Rezaei, H. Badri, S.M. Abbasi, Hot deformation behavior of austenite in HSLA-100 microalloyed steel. Materials Science and Engineering: A. 528 (4–5) (2011) 2158–2163.

DOI: 10.1016/j.msea.2010.11.062

Google Scholar

[13] H. Sidhom, F. Ghanem, T. Amadou, G. Gonzalez, C. Braham, Effect of electro discharge machining (EDM) on the AISI316L SS white layer microstructure and corrosion resistance. The international journal of advanced manufacturing technology. 65 (1–4) (2013) 141–153.

DOI: 10.1007/s00170-012-4156-6

Google Scholar

[14] K. Sipos, M. Lopez, M. Trucco, Surface martensite white layer produced by adhesive sliding wear friction in AISI 1065 steel. Revista latinoamericana de metalurgia y materiales. 28 (1) (2008) 46–50.

Google Scholar

[15] O. Volkov, Z. Kraevska, A. Vasilchenko, T. Hannichenko, Additional strengthening of "screper" jewelry tool using friction. Solid state phenomena. 334 (2022) 100–106.

DOI: 10.4028/p-w6bzqu

Google Scholar

[16] O. Volkov, V. Subbotinа, Z. Kraievska, A. Vasilchenko, Selection and application of the optimal surface engineering method to restore the properties of rolling equipment elements that have been reduced due to violations of surface grinding technology. Solid state phenomena. 350 (2023) 13–19.

DOI: 10.4028/p-5ctyhi

Google Scholar

[17] O. Volkov, Z. Kraevska, H. Kulyk, A. Vasilchenko, The Influence of Energy-Force Parameters on the Condition of Surface Structure and Properties of Steel during Frictional Thermomechanical Processing. Solid State Phenomena. 364 (2024) 47–55.

DOI: 10.4028/p-mhxgo5

Google Scholar

[18] О.А. Volkov, Study of heat deformation influence in surface strain hardening of steel by thermofriction processing. Eastern-European journal of enterprise technologies. 2 5(80) (2016) 38–44.

DOI: 10.15587/1729-4061.2016.65458

Google Scholar