[1]
D. Xunbai, S. Dang, Y. Yuzheng, Ch. Yingbin, The Finite Element Method with High-Order Enrichment Functions for Elastodynamic Analysis. Mathematics. 10 (2022) 1–27.
DOI: 10.3390/math10234595
Google Scholar
[2]
T. Zhang, D. Chen, H. Yang, W. Zhao, Y. Wang, H. Zhou, Spreading Behavior of Non-Spherical Particles with Reconstructed Shapes Using Discrete Element Method in Additive Manufacturing. Polymers. 16 (2024) 1–12.
DOI: 10.3390/polym16091179
Google Scholar
[3]
M. Shawki, M. Eltarahony, M. Maisa, The Impact of Titanium Oxide Nanoparticles and Low Direct Electric Current on biofilm Dispersal of Bacillus Cereus and Pseudomonas Aeruginosa: a Comparative Study. Papers in Physics. 13 (2021) 1–14.
DOI: 10.4279/pip.130005
Google Scholar
[4]
V. Pasternak, A. Ruban, O. Zemlianskyi, G. Ivanov, Using various methods of imaging and visualization for studying heterogeneous structures at micro- and nanoscales. Materials Science Forum. 1126 (2024) 131–141.
DOI: 10.4028/p-85YY1q
Google Scholar
[5]
T. Ueda, Reproducibility of the Repose Angle, Porosity, and Coordination Number of Particles Generated by Spherical Harmonic-Based Principal Component Analysis Using Discrete Element Simulation. Powder Technology. 415 (2023) 1–22.
DOI: 10.1016/j.powtec.2022.118143
Google Scholar
[6]
V. Pasternak, L. Samchuk, A. Ruban, O. Chernenko, N. Morkovska, Investigation of the main stages in modeling spherical particles of inhomogeneous materials. Materials Science Forum. 1068 (2022) 207–214.
DOI: 10.4028/p-9jq543
Google Scholar
[7]
R. Hesse, F. Krull, S. Antonyuk, Prediction of Random Packing Density and Flowability for Non-Spherical Particles by Deep Convolutional Neural Networks and Discrete Element Method simulations. Powder Technology. 393 (2021) 559–581.
DOI: 10.1016/j.powtec.2021.07.056
Google Scholar
[8]
V. Pasternak, A. Ruban, O. Holii, S. Vavreniuk, Mathematical model of the dynamics of spherical elements. Advances in Science and Technology. 156 (2024) 117–125.
DOI: 10.4028/p-vqm060
Google Scholar
[9]
D. Huaiping, W. Qiao, Hu. Wei, Y. Xiaochun, Spatial Rigid-Flexible-Liquid Coupling Dynamics of Towed System Analyzed by a Hamiltonian Finite Element Method. Journal of Marine Science and Engineering. 9 (2021) 1–18.
DOI: 10.3390/jmse9111157
Google Scholar
[10]
J. Burunkova, G. Alkhalil, A. Veniaminov, I. Csarnovics, S. Molnar, S. Kokenyesi, Arsenic trisulfide-doped silica-based porous glass. Optics and Laser Technology. 147 (2022) 1–7.
DOI: 10.1016/j.optlastec.2021.107658
Google Scholar
[11]
V. Pasternak, A. Ruban, Y. Horbachenko, S. Vavreniuk, Computer modelling of the process of separation of heterogeneous elements (spheres). Advances in Science and Technology. 156 (2024) 127–136.
DOI: 10.4028/p-5aAMEf
Google Scholar
[12]
J. Wang, Zh. Zhang, Fu. Han, Sh. Chen, W. Ying, Modeling of laser power attenuation by powder particles for laser solid forming. Procedia CIRP. 95 (2020) 42–47.
DOI: 10.1016/j.procir.2020.02.286
Google Scholar
[13]
H.M. Lee, T.H. Kim, G.H. Yoon, Analysis of Cone-Shaped Projectile Behavior During Penetration into Granular Particles Using the Discrete Element Method. Computational Particle Mechanics. 11 (2024) 689–703.
DOI: 10.1007/s40571-023-00647-1
Google Scholar
[14]
V. Pasternak, A. Ruban, O. Bilotil, D. Karpova, Effective application of numerical approaches and Green functions for the process of modelling spheres. Advances in Science and Technology. 156 (2024) 3–13.
DOI: 10.4028/p-5KGuD9
Google Scholar
[15]
Hai. Sun, Hend. Elzefzafy, Study on Transmission Characteristics in Three Kinds of Deformed Finlines Based on Edge-Based Finite Element Method. Applied Mathematics and Nonlinear Sciences. 8 (2023) 35–44.
DOI: 10.2478/amns.2022.1.00021
Google Scholar
[16]
P. Hirschberger, Th. Trang Võ, Urs. Peuker, H. Kruggel-Emden, A Texture Inheritance Model for Spherical Particles in Particle Replacement Method (PRM) Schemes for Breakage in Discrete Element Method (DEM) Simulations. Minerals Engineering. 205 (2024) 1–19.
DOI: 10.1016/j.mineng.2023.108491
Google Scholar
[17]
V. Pasternak, A. Ruban, O. Chernenko, O. Nadon, Use of the boundary element method for solving problems of predicting the regularities of formation of the structure of non-isometric components. Advances in Science and Technology. 156 (2024) 15–25.
DOI: 10.4028/p-xm5pzl
Google Scholar
[18]
Al. Wannas Akeel, H. Auday Shaker, N. H. Hamza, Elastic – Plastic Analysis of the Plane Strain Under Combined Thermal and Pressure Loads with a New Technique in the Finite Element Method. Open Engineering. 12 (2022) 477–484.
DOI: 10.1515/eng-2022-0049
Google Scholar
[19]
V. Pasternak, A. Ruban, K. Pasynchuk, P. Polyanskyi, Special features of using mathematical modeling for the study of tetrahedral elements. Advances in Science and Technology. 156 (2024) 27–37.
DOI: 10.4028/p-DBbwY3
Google Scholar
[20]
Zhu. Fang, Xia. Qian, Y. Zhang, Wen. Liu, Sh. Li, A New Discrete Element Method for Small Adhesive Non-Spherical Particles. Journal of Computational Physics. 513 (2024) 1–20.
DOI: 10.1016/j.jcp.2024.113193
Google Scholar
[21]
V. Pasternak, A. Ruban, V. Shvedun, J. Veretennikova, Development of a 3d computer simulation model using C++ methods. Defect and Diffusion Forum. 428 (2023) 57-66.
DOI: 10.4028/p-5iwtnl
Google Scholar
[22]
M. Brown, R. M'Saoubi, P. Crawforth, A. Mantle, J. McGourlay, H. Ghadbeigi, On deformation characterisation of machined surfaces and machining-induced white layers in a milled titanium alloy. Journal of Materials Processing Tech.. 299 (2022) 1–15.
DOI: 10.1016/j.jmatprotec.2021.117378
Google Scholar
[23]
V. Pasternak, O. Zabolotnyi, K. Svirzhevskyi, I. Zadorozhnikova, J. Machado, Influence of mechanical processing on the durability of parts in additive manufacturing conditions. Lecture Notes in Mechanical Engineering. (2023) 24–35.
DOI: 10.1007/978-3-031-09382-1_3
Google Scholar
[24]
C. Aguilar, T. Aguirre, C. Martínez, F. De Barbieri, F. San Martín, V. Salinas, I. Alfonso, Improving the mechanical strength of ternary beta titanium alloy (Ti-Ta-Sn) foams, using a bimodal microstructure. Materials and Design. 195 (2020) 1–13.
DOI: 10.1016/j.matdes.2020.108945
Google Scholar
[25]
M. Zouaou, J. Gardan, P. Lafon, A. Makke, C. Labergere, N. Recho, A Finite Element Method to Predict the Mechanical Behavior of a Pre-Structured Material Manufactured by Fused Filament Fabrication in 3D Printing. Applied Sciences. 11 (2021) 2–19.
DOI: 10.3390/app11115075
Google Scholar
[26]
V. Pasternak, H. Sulym, I.M. Pasternak, I. Hotsyk, Extended Stroh formalism for plane problems of thermoelasticity of quasicrystals with applications to Green's functions and fracture mechanics. International Journal of Engineering Science. 203 (2024) 104124.
DOI: 10.1016/j.ijengsci.2024.104124
Google Scholar
[27]
Xu. Xiaohuan, S. Jianjun, X. Rongxi, Finite Element Stress Model of Direct Band Gap Ge Implementation Method Compatible with Si Process. Advances in Condensed Matter Physics. 1 (2021) 1–10.
DOI: 10.1155/2019/2096854
Google Scholar
[28]
Ch. Hoshishima, Sh. Ohsaki, H. Nakamura, S. Watano, Parameter Calibration of Discrete Element Method Modelling for Cohesive and Non-Spherical Particles of Powder. Powder Technology. 386 (2021) 199–208.
DOI: 10.1016/j.powtec.2021.03.044
Google Scholar
[29]
S. Logvinkov, I. Ostapenko, O. Borisenko, O. Skorodumova, A. Ivashura, Prediction of melting paths of wollastonite-containing compositions. China's Refractories. 29 (2020) 13–18.
Google Scholar
[30]
Otrosh, Yu., Semkiv, O., Rybka, E., Kovalov, A. About need of calculations for the steel framework building in temperature influences conditions. IOP Conference Series: Materials Science and Engineering. 708 (1) (2019) № 012065.
DOI: 10.1088/1757-899x/708/1/012065
Google Scholar
[31]
V. Venkatesh, R. Noraas, A. Pilchak, S. Tamirisa, K. Calvert, A. Salem, T. Broderick, M. Glavicic, I. Dempster, V. Saraf, Data driven tools and methods for microtexture classification and dwell fatigue life prediction in dual phase titanium alloys, Web of Conferences. 321 (2020) 1–8.
DOI: 10.1051/matecconf/202032111091
Google Scholar
[32]
H. Sulym, Ia. Pasternak, V. Pasternak, Boundary element modeling of pyroelectric solids with shell inclusions. Mechanics and Mechanical Engineering. 22 (2018) 727–737.
DOI: 10.2478/mme-2018-0057
Google Scholar
[33]
D. Xunbai, S. Dang, Y. Yuzheng, Ch. Yingbin, The Finite Element Method with High-order Enrichment Functions for Elastodynamic Analysis. Mathematics. 10 (2022) 1–27.
DOI: 10.3390/math10234595
Google Scholar
[34]
M. Prasanna, Ar. Polojärvi, Breakage in Quasi-Static Discrete Element Simulations of Non-Spherical Particles-An Application to Ice Rubble. SSRN. 1 (2023) 1–23.
DOI: 10.2139/ssrn.4405130
Google Scholar
[35]
A. Vasilchenko, O. Danilin, T. Lutsenko, A. Ruban, D. Nestorenko, Features of some polymer building materials behavior at heating. Materials Science Forum. 1006 (2020) 47–54.
DOI: 10.4028/www.scientific.net/msf.1006.47
Google Scholar
[36]
Y. Gafner, S. Gafner, L. Redel, Estimation of the Structure of Binary Ag–Cu Nanoparticles During Their Crystallization by Computer Simulation. Journal of Nanoparticle Research. 25 (2023) 1–19.
DOI: 10.1007/s11051-023-05850-y
Google Scholar
[37]
Sh. Zhao, J. Zhaо, SudoDEM: Unleashing the Predictive Power of the Discrete Element Method on Simulation for Non-Spherical Granular Particles, Computer Physics Communications 259 (2021) 1–19.
DOI: 10.1016/j.cpc.2020.107670
Google Scholar
[38]
A. Vasilchenko, О. Danilin, Т. Lutsenko, А. Ruban, Features of evaluation of fire resistance of reinforced concrete ribbed slab under combined effect explosion-fire. Materials Science Forum. 1038 (2021) 492–499.
DOI: 10.4028/www.scientific.net/msf.1038.492
Google Scholar
[39]
P. Liu, J. Liu, H. Du, Z. Yin, A Method of Normal Contact Force Calculation Between Spherical Particles for Discrete Element Method. IET Conference Proceedings. 1 (2022) 1–20.
DOI: 10.1049/icp.2022.1609
Google Scholar
[40]
V. Pasternak, H. Sulym, I.M. Pasternak, Frequency domain Green's function and boundary integral equations for multifield materials and quasicrystals. International Journal of Solids and Structures. 286–287 (2024) 112562.
DOI: 10.1016/j.ijsolstr.2023.112562
Google Scholar
[41]
O. Kaglyak, B. Romanov, K. Romanova, A. Ruban, V. Shvedun, Repeatability of sheet material formation results and interchangeability of processing modes at multi-pass laser formation. Materials Science Forum. 1038 (2021) 15–24.
DOI: 10.4028/www.scientific.net/msf.1038.15
Google Scholar
[42]
L. Lipus, В. Acko, B., R. Klobucar, Enhancing Calibration Accuracy with Laser Interferometry for High-Resolution Measuring Systems. Advances in Production Engineering and Management. 19 (2024) 386-394.
DOI: 10.14743/apem2024.3.514
Google Scholar
[43]
V. Pasternak, A. Ruban, V. Hurkalenko, A. Zhyhlo, Computer simulation modeling of an inhomogeneous medium with ellipse-shaped irregular elements. Defect and Diffusion Forum. 428 (2023) 37–45.
DOI: 10.4028/p-lp6pjp
Google Scholar
[44]
Huabin. Wang, Jianmei. Li, Gaoyang. Hu, Bo. Zhou, Yuchen. Guo, Effect of Binder Coatings on the Fracture Behavior of Polymer-Crystal Composite Particles Using the Discrete Element Method. Coatings. 11 (2021) 1–15.
DOI: 10.3390/coatings11091075
Google Scholar
[45]
D. Kobylkin, O. Zachko, V. Popovych, N. Burak, R. Golovatyi, C. Wolff, Models for changes management in infrastructure projects. CEUR Workshop Proceedings. 2565 (2020) 106–115.
Google Scholar
[46]
V. Pasternak, A. Ruban, M. Surianinov, S. Shapoval, Simulation modeling of an inhomogeneous medium, in particular: round, triangular, square shapes. Defect and Diffusion Forum. 428 (2023) 27–35. https://www.scientific.net/DDF.428.27.
DOI: 10.4028/p-sx9ljy
Google Scholar