[1]
Bhuvaneshwaran, M., Sampath, P.S., Balu, S. and Sagadevan, S., 2019. Physicochemical and mechanical properties of natural cellulosic fiber from Coccinia Indica and its epoxy composites. Polimery, 64(10), pp.656-664.
DOI: 10.14314/polimery.2019.10.2
Google Scholar
[2]
Mylsamy, B., Aruchamy, K., Shanmugam, S.K.M., Palanisamy, S. and Ayrılmis, N., 2025. Improving performance of composites: Natural and synthetic fibre hybridisation techniques in composite materials–A Review. Materials Chemistry and Physics, p.130439.
DOI: 10.1016/j.matchemphys.2025.130439
Google Scholar
[3]
Venkatesh, J., Bhuvaneshwaran, M. and Jagadeesh, P., 2023, February. Experimental Analysis on Mechanical Properties of Hemp/Rice Cereal Fibre Reinforced Hybrid Composites for Light Weight Applications. In International Symposium on Lightweight and Sustainable Polymeric Materials (pp.377-385). Singapore: Springer Nature Singapore.
DOI: 10.1007/978-981-99-5567-1_28
Google Scholar
[4]
Mylsamy, B., Aruchamy, K., Subramani, S.P., Palaniappan, S.K., Rangappa, S.M. and Siengchin, S., 2023. State of the art of advanced fiber materials: Future directions, opportunities, and challenges. Fiber Mater. Design Fabr. Appl, pp.9783110992892-014.
DOI: 10.1515/9783110992892-014
Google Scholar
[5]
Bodros, E. and Baley, C., 2008. Study of the tensile properties of stinging nettle fibres (Urtica dioica). Materials letters, 62(14), pp.2143-2145.
DOI: 10.1016/j.matlet.2007.11.034
Google Scholar
[6]
Selvaraj, M., S, A. and Mylsamy, B., 2023. Characterization of new natural fiber from the stem of Tithonia diversifolia plant. Journal of Natural Fibers, 20(1), p.2167144.
DOI: 10.1080/15440478.2023.2167144
Google Scholar
[7]
Holbery, J. and Houston, D., 2006. Natural-fiber-reinforced polymer composites in automotive applications. Jom, 58(11), pp.80-86.
DOI: 10.1007/s11837-006-0234-2
Google Scholar
[8]
Sapuan, S.M. and Maleque, M.A., 2005. Design and fabrication of natural woven fabric reinforced epoxy composite for household telephone stand. Materials & design, 26(1), pp.65-71.
DOI: 10.1016/j.matdes.2004.03.015
Google Scholar
[9]
Nagappan, S., Subramani, S.P., Palaniappan, S.K. and Mylsamy, B., 2022. Impact of alkali treatment and fiber length on mechanical properties of new agro waste Lagenaria Siceraria fiber reinforced epoxy composites. Journal of Natural Fibers, 19(13), pp.6853-6864.
DOI: 10.1080/15440478.2021.1932681
Google Scholar
[10]
Prabhu, S., Vijayakumar, S., Ramasubbu, R., Praseetha, P.K., Karthikeyan, K., Thiyagarajan, G., Sureshkumar, J. and Prakash, N., 2021. Traditional uses, phytochemistry and pharmacology of Bauhinia racemosa Lam.: a comprehensive review. Future Journal of Pharmaceutical Sciences, 7(1), p.101.
DOI: 10.1186/s43094-021-00251-1
Google Scholar
[11]
Selvaraj, M., N, P., PT, R., Mylsamy, B. and S, S., 2023. Extraction and characterization of a new natural cellulosic fiber from bark of Ficus Carica plant as potential reinforcement for polymer composites. Journal of Natural Fibers, 20(2), p.2194699.
DOI: 10.1080/15440478.2023.2194699
Google Scholar
[12]
Mylsamy, B., Palaniappan, S.K., Subramani, S.P., Pal, S.K. and Sethuraman, B., 2020. Innovative characterization and mechanical properties of natural cellulosic Coccinia Indica fiber and its composites. Materials Testing, 62(1), pp.61-67.
DOI: 10.3139/120.111451
Google Scholar
[13]
Indran, S. and Raj, R.E., 2015. Characterization of new natural cellulosic fiber from Cissus quadrangularis stem. Carbohydrate polymers, 117, pp.392-399.
DOI: 10.1016/j.carbpol.2014.09.072
Google Scholar
[14]
V. Fiore, T. Scalici, A. Valenza: Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites, Carbohydrate Polymers 106 (2014), pp.77-83.
DOI: 10.1016/j.carbpol.2014.02.016
Google Scholar
[15]
Selvaraj, M., Chapagain, P. and Mylsamy, B., 2023. Characterization studies on new natural cellulosic fiber extracted from the stem of Ageratina Adenophora plant. Journal of Natural Fibers, 20(1), p.2156019.
DOI: 10.1080/15440478.2022.2156019
Google Scholar
[16]
V. S. Sreenivasan, D. Ravindran, V. Manikandan, R. Narayanasamy: Mechanical properties of randomly oriented short Sansevieria cylindrical fibre/polyester composites, Materials & Design 32 (2011), No. 4, pp.2444-2455.
DOI: 10.1016/j.matdes.2010.11.042
Google Scholar
[17]
Joseph, S., Sreekala, M.S., Oommen, Z., Koshy, P. and Thomas, S., 2002. A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibres and glass fibres. Composites Science and Technology, 62(14), pp.1857-1868.
DOI: 10.1016/s0266-3538(02)00098-2
Google Scholar
[18]
Mylsamy, B., Chinnasamy, V., Palaniappan, S.K., Subramani, S.P. and Gopalsamy, C., 2020. Effect of surface treatment on the tribological properties of Coccinia Indica cellulosic fiber reinforced polymer composites. Journal of Materials Research and Technology, 9(6), pp.16423-16434.
DOI: 10.1016/j.jmrt.2020.11.100
Google Scholar
[19]
Krishnasamy, K., Palanisamy, J. and Bhuvaneshwarana, M., 2024, November. A review on natural fiber reinforced biocomposites properties and its applications. In AIP Conference Proceedings (Vol. 3192, No. 1). AIP Publishing.
DOI: 10.1063/5.0241757
Google Scholar