A Comprehensive Review of Organoclays and Bio-Adsorbents for Effective Copper Removal

Article Preview

Abstract:

The toxicity, bioaccumulation, and persistence of heavy metals, especially copper (Cu2+), in ecosystems make their poisoning of water supplies a serious environmental and public health risk. Numerous treatment processes, such as ion exchange, membrane filtering, chemical precipitation, and electrochemical methods, have been developed to remove copper from wastewater. However, these technologies often face challenges related to high operational costs, energy consumption, and the generation of secondary waste. In this regard, adsorption has become a viable, economical, and environmentally sustainable heavy metal removal method. This paper offers a thorough examination of Cu2+ adsorption with bio-adsorbents, natural clays, and modified clays (organoclays Key adsorption parameters examined included pH, metal concentration, temperature, contact time, and adsorbent dosage. With their increased surface area and adsorption capacity, modified and functionalized clays and bio-adsorbents demonstrated superior performance. While functionalized biochar and organoclay composites were experimentally shown to have the highest adsorption capacity, while most natural and modified adsorbents demonstrated substantial removal efficiencies. Both monolayer and multilayer adsorption were indicated by the adsorption isotherms fit well to the Langmuir and Freundlich models. For the majority of adsorbents, kinetic investigations showed that the most accurately described the adsorption behavior. These findings suggest that due to their high cation exchange capacity (CEC) and large surface area, natural and modified adsorbents can be employed to remove Cu2+ from wastewater.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1172)

Pages:

57-70

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Hadoudi, H. Amhamdi, M.H. Ahari, Sorption of bisphenol A from aqueous solutions using natural adsorbents: isotherm, kinetic and effect of temperature, E3S Web Conf. 314 (2021) 07003.

DOI: 10.1051/e3sconf/202131407003

Google Scholar

[2] O. Fraiha, N. Zaki, N. Hadoudi, A. Salhi, A. El Youssfi, H. Amhamdi, M.H. Ahari, Adsorption-based removal of amoxicillin from aqueous environments: A mini review, E3S Web Conf. 527 (2024) 03012.

DOI: 10.1051/e3sconf/202452703012

Google Scholar

[3] M. Harja, G. Ciobanu, Eco-friendly nano-adsorbents for pollutant removal from wastewaters, in: Handb. Nanomater. Nanocomposites Energy Environ. Appl., Springer, Cham, 2021, pp.2225-2246.

DOI: 10.1007/978-3-030-36268-3_68

Google Scholar

[4] H. Dieter, Drinking water toxicology in its regulatory framework, 2011.

Google Scholar

[5] P. Häyrynen, J. Landaburu-Aguirre, E. Pongrácz, R.L. Keiski, Study of permeate flux in micellar-enhanced ultrafiltration on a semi-pilot scale: Simultaneous removal of heavy metals from phosphorous rich real wastewaters, Sep. Purif. Technol. 93 (2012) 59-66.

DOI: 10.1016/j.seppur.2012.03.029

Google Scholar

[6] A. Asfaram, M. Ghaedi, G.R. Ghezelbash, Biosorption of Zn²⁺, Ni²⁺ and Co²⁺ from water samples onto Yarrowia lipolytica ISF7 using a response surface methodology, and analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES), RSC Adv. 6 (2016) 23599-23610.

DOI: 10.1039/c5ra27170c

Google Scholar

[7] A. Asfaram, M. Ghaedi, A. Goudarzi, M. Rajabi, Response surface methodology approach for optimization of simultaneous dye and metal ion ultrasound-assisted adsorption onto Mn-doped Fe₃O₄-NPs loaded on AC: kinetic and isothermal studies, Dalton Trans. 44 (2015) 14707-14723.

DOI: 10.1039/c5dt01504a

Google Scholar

[8] E.A. Dil, M. Ghaedi, A. Asfaram, S. Hajati, F. Mehrabi, A. Goudarzi, Preparation of nanomaterials for the ultrasound-enhanced removal of Pb²⁺ ions and malachite green dye: chemometric optimization and modeling, Ultrason. Sonochem. 34 (2017) 677-691.

DOI: 10.1016/j.ultsonch.2016.07.001

Google Scholar

[9] M. Visa, Synthesis and characterization of new zeolite materials obtained from fly ash for heavy metals removal in advanced wastewater treatment, Powder Technol. 294 (2016) 338-347.

DOI: 10.1016/j.powtec.2016.02.019

Google Scholar

[10] A. Abbas, A.M. Al-Amer, T. Laoui, M.J. Al-Marri, M.S. Nasser, M. Khraisheh, M.A. Atieh, Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications, Sep. Purif. Technol. 157 (2016) 141-161.

DOI: 10.1016/j.seppur.2015.11.039

Google Scholar

[11] S. Wadhawan, A. Jain, J. Nayyar, S.K. Mehta, Role of nanomaterials as adsorbents in heavy metal ion removal from wastewater: A review, J. Water Process Eng. 33 (2020) 101038.

DOI: 10.1016/j.jwpe.2019.101038

Google Scholar

[12] V.N. Thekkudan, V.K. Vaidyanathan, S.K. Ponnusamy, C. Charles, S. Sundar, D. Vishnu, S. Subramanian, Review on nanoadsorbents: a solution for heavy metal removal from wastewater, IET Nanobiotechnol. 11(3) (2017) 213-224.

DOI: 10.1049/iet-nbt.2015.0114

Google Scholar

[13] I.K. Ogemdi, E.E. Gold, Physico-chemical parameters of industrial effluents from a brewery industry in Imo State, Nigeria, Adv. J. Chem. 1(2A) (2018) 66-78.

DOI: 10.29088/sami/ajca.2018.1.6678

Google Scholar

[14] I.K. Ogemdi, Removal of heavy metals from their solution using polystyrene adsorbent (foil take-away disposable plates), Int. J. Environ. Chem. 2(2) (2018) 29-38.

Google Scholar

[15] M. Rajabi, A. Rezaie, M. Ghaedi, Simultaneous extraction and preconcentration of some metal ions using eucalyptus-wood based activated carbon modified with silver hydroxide nanoparticles and a chelating agent: optimization by an experimental design, RSC Adv. 5(108) (2015) 89204-89217.

DOI: 10.1039/c5ra14005f

Google Scholar

[16] E.A. Dil, M. Ghaedi, A. Asfaram, The performance of nanorods material as adsorbent for removal of azo dyes and heavy metal ions: application of ultrasound wave, optimization and modeling, Ultrason. Sonochem. 34 (2017) 792-802.

DOI: 10.1016/j.ultsonch.2016.07.015

Google Scholar

[17] W. Cheng, C. Ding, Q. Wu, X. Wang, Y. Sun, W. Shi, X. Wang, Retracted Article: mutual effect of U(VI) and Sr(II) on graphene oxides: evidence from EXAFS and theoretical calculations, Environ. Sci. Nano 4(5) (2017) 1124-1131.

DOI: 10.1039/c7en00114b

Google Scholar

[18] E.C. Emenike, A.G. Adeniyi, P.E. Omuku, K.C. Okwu, K.O. Iwuozor, Recent advances in nano-adsorbents for the sequestration of copper from water, J. Water Process Eng. 47 (2022) 102715.

DOI: 10.1016/j.jwpe.2022.102715

Google Scholar

[19] I.K. Ogemdi, Heavy metal concentration of aphrodisiac herbs locally sold in the south-eastern region of Nigeria, Pharm. Sci. Technol. 3(1) (2019) 22-26.

DOI: 10.11648/j.pst.20190301.13

Google Scholar

[20] M. Kaur, P. Sharma, S. Kumari, Equilibrium studies for copper removal from aqueous solution using nanoadsorbent synthesized from rice husk, SN Appl. Sci. 1(9) (2019) 988.

DOI: 10.1007/s42452-019-1024-0

Google Scholar

[21] M. Bagheri, S. Azizian, B. Jaleh, A. Chehregani, Adsorption of Cu (II) from aqueous solution by micro-structured ZnO thin films, J. Ind. Eng. Chem. 20 (2014) 2439-2446.

DOI: 10.1016/j.jiec.2013.10.024

Google Scholar

[22] N. Bakhtiari, S. Azizian, Adsorption of copper ion from aqueous solution by nanoporous MOF-5: A kinetic and equilibrium study, J. Mol. Liquids 206 (2015) 114-118.

DOI: 10.1016/j.molliq.2015.02.009

Google Scholar

[23] A. Zach-Maor, R. Semiat, H. Shemer, Removal of heavy metals by immobilized magnetite nano-particles, Desalination Water Treat. 31 (2011) 64-70.

DOI: 10.5004/dwt.2011.2369

Google Scholar

[24] M.R. Awual, New type mesoporous conjugate material for selective optical copper (II) ions monitoring & removal from polluted waters, Chem. Eng. J. 307 (2017) 85-94.

DOI: 10.1016/j.cej.2016.07.110

Google Scholar

[25] M.E. Mahmoud, G.M. Nabil, S.M. Mahmoud, High performance nano-zirconium silicate adsorbent for efficient removal of copper (II), cadmium (II) and lead (II), J. Environ. Chem. Eng. 3(2) (2015) 1320-1328.

DOI: 10.1016/j.jece.2014.11.027

Google Scholar

[26] L.I. Abd Ali, W.A.W. Ibrahim, A. Sulaiman, M.A. Kamboh, M.M. Sanagi, New chrysin-functionalized silica-core shell magnetic nanoparticles for the magnetic solid phase extraction of copper ions from water samples, Talanta 148 (2016) 191-199.

DOI: 10.1016/j.talanta.2015.10.062

Google Scholar

[27] C. Li, H. Wang, X. Liao, R. Xiao, K. Liu, J. Bai, Q. He, Heavy metal pollution in coastal wetlands: A systematic review of studies globally over the past three decades, J. Hazard. Mater. 424 (2022) 127312.

DOI: 10.1016/j.jhazmat.2021.127312

Google Scholar

[28] Z. M. Zaynab, R. Al-Yahyai, A. Ameen, Y. Sharif, L. Ali, M. Fatima, S. Li, Health and environmental effects of heavy metals, J. King Saud Univ.-Sci. 34(1) (2022) 101653.

DOI: 10.1016/j.jksus.2021.101653

Google Scholar

[29] A.T. Hoang, S. Nižetić, C.K. Cheng, R. Luque, S. Thomas, T.L. Banh, X.P. Nguyen, Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: A comprehensive review, Chemosphere 287 (2022) 131959.

DOI: 10.1016/j.chemosphere.2021.131959

Google Scholar

[30] H.G. Hoang, C.F. Chiang, C. Lin, C.Y. Wu, C.W. Lee, N.K. Cheruiyot, X.T. Bui, Human health risk simulation and assessment of heavy metal contamination in a river affected by industrial activities, Environ. Pollut. 285 (2021) 117414.

DOI: 10.1016/j.envpol.2021.117414

Google Scholar

[31] A. Jawed, V. Saxena, L.M. Pandey, Engineered nanomaterials and their surface functionalization for the removal of heavy metals: A review, J. Water Process Eng. 33 (2020) 101009.

DOI: 10.1016/j.jwpe.2019.101009

Google Scholar

[32] X. Zhang, Y. Dou, C. Gao, C. He, J. Gao, S. Zhao, L. Deng, Removal of Cd (II) by modified maifanite coated with Mg-layered double hydroxides in constructed rapid infiltration systems, Sci. Total Environ. 685 (2019) 951-962.

DOI: 10.1016/j.scitotenv.2019.06.228

Google Scholar

[33] K.O. Iwuozor, J.O. Ighalo, E.C. Emenike, L.A. Ogunfowora, C.A. Igwegbe, Adsorption of methyl orange: A review on adsorbent performance, Curr. Res. Green Sustainable Chem. 4 (2021) 100179.

DOI: 10.1016/j.crgsc.2021.100179

Google Scholar

[34] O. Fraiha, N. Hadoudi, N. Zaki, A. Salhi, H. Amhamdi, F. Mourabit, M.H. Ahari, Comprehensive review on the adsorption of pharmaceutical products from wastewater by clay materials, Desal. Water Treat. 317 (2024) 100114.

DOI: 10.1016/j.dwt.2024.100114

Google Scholar

[35] M.K. Uddin, A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade, Chem. Eng. J. 308 (2017) 438-462.

DOI: 10.1016/j.cej.2016.09.029

Google Scholar

[36] N. Hadoudi, M.H. Ahari, N. Zaki, A. Charki, H. El Ouarghi, A. Bayoussef, H. Amhamdi, Removal efficiency of phenolic compounds (Bisphenol A and Pentachlorophenol) by adsorption using a bentonite-CTAB, Recent Adv. Montmorillonite 55 (2024).

DOI: 10.5772/intechopen.1004783

Google Scholar

[37] A. Charki, H. El Ouarghi, M.H. Ahari, Treatability tests of synthetic leachate from the Al-Hoceima city controlled landfill, in E3S Web of Conferences, 2021, EDP Sciences.

DOI: 10.1051/e3sconf/202131407007

Google Scholar

[38] A. Charki, H. El Ouarghi, M. Ahari, Synthesis of leachate from the Al Hoceima controlled landfill and characterization (Morocco, North of Africa), Moroc. J. Chem. 10(4) (2022) 800-807.

Google Scholar

[39] M. Ahari, N. Touze-Foltz, L. Mazéas, A. Guenne, Quantification of the adsorption of phenolic compounds on the geotextile and bentonite components of four geosynthetic clay liners, Geosynthetics Int. 18(5) (2011) 322-331.

DOI: 10.1680/gein.2011.18.5.322

Google Scholar

[40] M.A. Al-Ghouti, D.A. Da'ana, Guidelines for the use and interpretation of adsorption isotherm models: A review, J. Hazard. Mater. 393 (2020) 122383.

DOI: 10.1016/j.jhazmat.2020.122383

Google Scholar

[41] M.H. Ahari, N. Touze-Foltz, L. Mazéas, Sorption of chlorophenols on geotextile of the geosynthetic clay liners, Environ. Eng. Res. 25(2) (2020) 163-170.

DOI: 10.4491/eer.2019.004

Google Scholar

[42] M. Lamrani, M. Mouchane, H. Taybi, A. Mouadili, Comprehensive review on the adsorption properties of clay minerals for enhanced removal of toxic dyes and heavy metals, J. Water Environ. Nanotechnol. 10(1) (2025) 85-107.

Google Scholar

[43] A. Gil, L. Santamaría, S. Korili, Removal of caffeine and diclofenac from aqueous solution by adsorption on multiwalled carbon nanotubes, Colloid Interface Sci. Commun. 22 (2018) 25-28.

DOI: 10.1016/j.colcom.2017.11.007

Google Scholar

[44] J. Bayuo, M.J. Rwiza, K.M. Mtei, Applicability of bio-adsorbents synthesized from maize/corn plant residues for heavy metals removal from aquatic environments: an insight review, 2023.

Google Scholar

[45] M. Shahrashoub, S. Bakhtiari, The efficiency of activated carbon/magnetite nanoparticles composites in copper removal: Industrial waste recovery, green synthesis, characterization, and adsorption-desorption studies, Microporous Mesoporous Mater. 311 (2021) 110692.

DOI: 10.1016/j.micromeso.2020.110692

Google Scholar

[46] A. Mittal, R. Ahmad, I. Hasan, Poly (methyl methacrylate)-grafted alginate/Fe3O4 nanocomposite: synthesis and its application for the removal of heavy metal ions, Desal. Water Treat. 57(42) (2016) 19820-19833.

DOI: 10.1080/19443994.2015.1104726

Google Scholar

[47] F. Ge, M.M. Li, H. Ye, B.X. Zhao, Effective removal of heavy metal ions Cd²⁺, Zn²⁺, Pb²⁺, Cu²⁺ from aqueous solution by polymer-modified magnetic nanoparticles, J. Hazard. Mater. 211 (2012) 366-372.

DOI: 10.1016/j.jhazmat.2011.12.013

Google Scholar

[48] F.M. Shanika, M. Rohini, Synthesis, characterization and application of nanohydroxyapatite and nanocomposite of hydroxyapatite with granular activated carbon for the removal of Pb²⁺ from aqueous solutions, Appl. Surf. Sci. 351(1) (2015) 95-103.

DOI: 10.1016/j.apsusc.2015.05.092

Google Scholar

[49] E. Kuldeyev, M. Seitzhanova, S. Tanirbergenova, K. Tazhu, E. Doszhanov, Z. Mansurov, R. Berndtsson, Modifying natural zeolites to improve heavy metal adsorption, Water 15(12) (2023) 2215.

DOI: 10.3390/w15122215

Google Scholar

[50] I. Anastopoulos, A. Mittal, M. Usman, J. Mittal, G. Yu, A. Núñez-Delgado, M. Kornaros, A review on halloysite-based adsorbents to remove pollutants in water and wastewater, J. Mol. Liquids 269 (2018) 855-868.

DOI: 10.1016/j.molliq.2018.08.104

Google Scholar

[51] N. Danyliuk, J. Tomaszewska, T. Tatarchuk, Halloysite nanotubes and halloysite-based composites for environmental and biomedical applications, J. Mol. Liquids 309 (2020) 113077.

DOI: 10.1016/j.molliq.2020.113077

Google Scholar

[52] P. Maziarz, J. Matusik, The effect of acid activation and calcination of halloysite on the efficiency and selectivity of Pb (II), Cd (II), Zn (II) and As (V) uptake, Clay Miner. 51(3) (2016) 385-394.

DOI: 10.1180/claymin.2016.051.3.06

Google Scholar

[53] W.A. Khanday, F. Marrakchi, M. Asif, B.H. Hameed, Mesoporous zeolite–activated carbon composite from oil palm ash as an effective adsorbent for methylene blue, J. Taiwan Inst. Chem. Eng. 70 (2017) 32-41.

DOI: 10.1016/j.jtice.2016.10.029

Google Scholar

[54] B. Sarkar, R. Rusmin, U.C. Ugochukwu, R. Mukhopadhyay, K.M. Manjaiah, Modified clay minerals for environmental applications, in Modified Clay and Zeolite Nanocomposite Materials (Elsevier, 2019) 113-127.

DOI: 10.1016/b978-0-12-814617-0.00003-7

Google Scholar

[55] L. Perelomov, S. Mandzhieva, T. Minkina, Y. Atroshchenko, I. Perelomova, T. Bauer, A. Barakhov, The synthesis of organoclays based on clay minerals with different structural expansion capacities, Minerals 11(7) (2021) 707.

DOI: 10.3390/min11070707

Google Scholar

[56] N. Benderdouche, B. Bestani, M. Hamzaoui, The use of linear and nonlinear methods for adsorption isotherm optimization of basic green 4-dye onto sawdust-based activated carbon, J. Mater. Environ. Sci. 9(4) (2018) 1110-1118.

Google Scholar

[57] W. Khanday, M. Asif, B.H. Hameed, Cross-linked beads of activated oil palm ash zeolite/chitosan composite as a bio-adsorbent for the removal of methylene blue and acid blue 29 dyes, Int. J. Biol. Macromol. 95 (2017) 895-902.

DOI: 10.1016/j.ijbiomac.2016.10.075

Google Scholar

[58] M. Arbabi, S. Hemati, Z. Shamsizadeh, A. Arbabi, Nitrate removal from aqueous solution by almond shells activated with magnetic nanoparticles, Desal. Water Treat. 80 (2017) 344-351.

DOI: 10.5004/dwt.2017.20999

Google Scholar

[59] F. Marrakchi, M.J. Ahmed, W.A. Khanday, M. Asif, B.H. Hameed, Mesoporous-activated carbon prepared from chitosan flakes via single-step sodium hydroxide activation for the adsorption of methylene blue, Int. J. Biol. Macromol. 98 (2017) 233-239.

DOI: 10.1016/j.ijbiomac.2017.01.119

Google Scholar

[60] M.A. Islam, M.J. Ahmed, W.A. Khanday, M. Asif, B.H. Hameed, Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal, Ecotoxicol. Environ. Saf. 138 (2017) 279-285.

DOI: 10.1016/j.ecoenv.2017.01.010

Google Scholar

[61] S. Koppula, P. Jagasia, M.K. Panchangam, S.B.M. Surya, Synthesis of bimetallic metal-organic frameworks composite for the removal of Copper (II), Chromium (VI), and Uranium (VI) from the aqueous solution using fixed-bed column adsorption, J. Solid State Chem. 312 (2022) 123168.

DOI: 10.1016/j.jssc.2022.123168

Google Scholar

[62] R. Guégan, Organoclay applications and limits in the environment, Compt. Rendus Chimie 22(2-3) (2019) 132-141.

DOI: 10.1016/j.crci.2018.09.004

Google Scholar

[63] R. Mukhopadhyay, D. Bhaduri, B. Sarkar, R. Rusmin, D. Hou, R. Khanam, Y.S. Ok, Clay–polymer nanocomposites: Progress and challenges for use in sustainable water treatment, J. Hazard. Mater. 383 (2020) 121125.

DOI: 10.1016/j.jhazmat.2019.121125

Google Scholar

[64] G. Lagaly, M. Ogawa, I. Dékány, Clay mineral organic interactions, Developments in Clay Science 1 (2006) 309-377.

DOI: 10.1016/s1572-4352(05)01010-x

Google Scholar

[65] J. Brixie, S. Boyd, Treatment of contaminated soils with organoclays to reduce leachable pentachlorophenol, Wiley Online Library (1994).

DOI: 10.2134/jeq1994.00472425002300060023x

Google Scholar

[66] R. Zhu, Q. Chen, Q. Zhou, Y. Xi, J. Zhu, H. He, Adsorbents based on montmorillonite for contaminant removal from water: A review, Appl. Clay Sci. 123 (2016) 239-258.

DOI: 10.1016/j.clay.2015.12.024

Google Scholar

[67] F. Bergaya, G. Lagaly, General introduction: clays, clay minerals, and clay science, Developments in Clay Science 1 (2006) 1-18.

DOI: 10.1016/s1572-4352(05)01001-9

Google Scholar

[68] H. Moazed, T. Viraraghavan, Removal of oil from water by bentonite organoclay, Pract. Periodical Hazardous, Toxic, and Radioactive Waste Manag. 9(2) (2005) 130-134.

DOI: 10.1061/(asce)1090-025x(2005)9:2(130)

Google Scholar

[69] T.A. Saleh, M. Mustaqeem, M. Khaled, Water treatment technologies in removing heavy metal ions from wastewater: A review, Environ. Nanotechnol. Monit. Manag. 17 (2022) 100617.

DOI: 10.1016/j.enmm.2021.100617

Google Scholar

[70] R. Chakraborty, A. Asthana, A.K. Singh, B. Jain, A.B.H. Susan, Adsorption of heavy metal ions by various low-cost adsorbents: A review, Int. J. Environ. Anal. Chem. 102(2) (2022) 342-379.

DOI: 10.1080/03067319.2020.1722811

Google Scholar

[71] K. Á. Sreenivas, M. Á. Inarkar, S.V. Gokhale, S.S. Lele, Re-utilization of ash gourd (Benincasa hispida) peel waste for chromium (VI) biosorption: Equilibrium and column studies, J. Environ. Chem. Eng. 2(1) (2014) 455-462.

DOI: 10.1016/j.jece.2014.01.017

Google Scholar

[72] Y.K. Vitor-Ramos, E.J. Ochoa-Escobar, N. Moggiano-Aburto, Bioadsorption by coffee leaves in polluted river Mantaro water at Central Peru, in IOP Conference Series: Earth and Environmental Science, IOP Publishing (2022).

DOI: 10.1088/1755-1315/952/1/012005

Google Scholar

[73] S.T. Hussain, S.A.K. Ali, Removal of heavy metal by ion exchange using bentonite clay, J. Ecological Engineering 22(1) (2021) 104-111.

DOI: 10.12911/22998993/128865

Google Scholar

[74] N.M. Alandis, W. Mekhamer, O. Aldayel, J.A. Hefne, M. Alam, Adsorptive applications of montmorillonite clay for the removal of Ag (I) and Cu (II) from aqueous medium, J. Chem. 2019(1) (2019) 7129014.

DOI: 10.1155/2019/7129014

Google Scholar

[75] P.E. Dim, S.C. Olu, J.O. Okafor, Kinetic and thermodynamic studies of the adsorption of Cu (II) and Cr (VI) ions from an industrial effluent on a kaolinite clay, J. Chem. Technol. Metall. 55(5) (2020).

Google Scholar

[76] B.H. Bac, Adsorption–desorption behavior of halloysite clay for Cu2+ ions and recovery of copper by electrodeposition method, Desal. Water Treat. 317 (2024) 100207.

DOI: 10.1016/j.dwt.2024.100207

Google Scholar

[77] G. Sayed, E. Abo Taleb, F. El-Saied, Investigation of Illite and Nano Illite for Efficient Removal of Cu (II), Ni (II), Zn (II), and Cd (II) Cations from Industrial Effluent, Egyptian J. Chem. 68(2) (2025).

DOI: 10.21608/ejchem.2024.289013.9710

Google Scholar

[78] W.V.D. Oliveira, A.Í.S. Morais, L.M.C. Honorio, P.A. Trigueiro, L.C. Almeida, R.R.P. Garcia, J.A. Osajima, TiO2 immobilized on fibrous clay as strategies to photocatalytic activity, Mater. Res. 23(1) (2020) e20190463.

DOI: 10.1590/1980-5373-mr-2019-0463

Google Scholar

[79] K. Akpomie, F. Dawodu, Acid-modified montmorillonite for sorption of heavy metals from automobile effluent, Beni-Suef Univ. J. Basic Appl. Sci. 5(1) (2016) 1-12.

DOI: 10.1016/j.bjbas.2016.01.003

Google Scholar

[80] N.H. Ngoan, L.H. Thanh, L.T. Phu, D.H. Giao, N.T. Mai, Improving copper ions adsorption using Ca-modified NaY zeolite synthesized from calcined rice husk ash, J. Sol-Gel Sci. Technol. 113(2) (2025) 438-449.

DOI: 10.1007/s10971-024-06637-w

Google Scholar

[81] H. Qin, L. Xu, L. Qin, B. Kang, F. Zha, Q. Wang, K. Huang, Removal of Cu (II) by sodium hexametaphosphate and nano zero-valent iron modified calcium bentonite: Characteristic, adsorption performance and mechanism, J. Environ. Manage. 358 (2024) 120866.

DOI: 10.1016/j.jenvman.2024.120866

Google Scholar

[82] S.A. Gupta, Y. Vishesh, N. Sarvshrestha, A.S. Bhardwaj, P.A. Kumar, N.S. Topare, A. Khan, Adsorption isotherm studies of Methylene blue using activated carbon of waste fruit peel as an adsorbent, Mater. Today: Proc. 57 (2022) 1500-1508.

DOI: 10.1016/j.matpr.2021.12.044

Google Scholar

[83] S. Meftah, K. Meftah, F. Assadi, The main types of derivatives of plant matter and agricultural waste used as bio-adsorbents for the removal of heavy metals and dyes: a review, Egyptian J. Chem. (2024).

DOI: 10.21608/ejchem.2024.251450.8944

Google Scholar

[84] Q. Wang, D. He, C. Li, Z. Sun, J. Mu, Honeycomb-like cork activated carbon modified with carbon dots for high-efficient adsorption of Pb (Ⅱ) and rhodamine B, Ind. Crops Prod. 196 (2023) 116485.

DOI: 10.1016/j.indcrop.2023.116485

Google Scholar

[85] P. Phuengphai, T. Singjanusong, N. Kheangkhun, A. Wattanakornsiri, Removal of copper (II) from aqueous solution using chemically modified fruit peels as efficient low-cost biosorbents, Water Sci. Eng. 14(4) (2021) 286-294.

DOI: 10.1016/j.wse.2021.08.003

Google Scholar

[86] M. Iqbal, A. Saeed, I. Kalim, Characterization of adsorptive capacity and investigation of mechanism of Cu2+, Ni2+ and Zn2+ adsorption on mango peel waste from constituted metal solution and genuine electroplating effluent, Sep. Sci. Technol. 44(15) (2009) 3770-3791.

DOI: 10.1080/01496390903182305

Google Scholar

[87] S.T. Maleki, P. Beigi, M. Babamoradi, Synthesis of pectin hydrogel/Fe3O4/Bentonite and its use for the adsorption of Pb (II), Cu (II), and Cd (II) heavy metals from aqueous solutions, Mater. Sci. Eng. B 298 (2023) 116899.

DOI: 10.1016/j.mseb.2023.116899

Google Scholar

[88] H. Su, W. Qiu, T. Deng, X. Zheng, H. Wang, P. Wen, Fabrication of physically multi-crosslinked sodium alginate/carboxylated-chitosan/montmorillonite-base aerogel modified by polyethyleneimine for the efficient adsorption of organic dye and Cu (II) contaminants, Sep. Purif. Technol. 330 (2024) 125321.

DOI: 10.1016/j.seppur.2023.125321

Google Scholar

[89] M. Yuan, D. Liu, W. Liu, Z. Song, S. Shang, Z. Wang, S. Cui, Graphene oxide/polydopamine modified montmorillonite/carboxymethyl chitosan composite aerogel for efficient removal of Pb2+, Cu2+, and Cd2+: Adsorption behavior, mechanism and DFT study, Sep. Purif. Technol. 339 (2024) 126585.

DOI: 10.1016/j.seppur.2024.126585

Google Scholar

[90] J. Ma, M.A. Khan, M. Xia, C. Fu, S. Zhu, Y. Chu, F. Wang, Effective adsorption of heavy metal ions by sodium lignosulfonate reformed montmorillonite, Int. J. Biol. Macromol. 138 (2019) 188-197.

DOI: 10.1016/j.ijbiomac.2019.07.075

Google Scholar

[91] D. Khandamov, T.A. Kurniawan, A. Bekmirzayev, R. Eshmetov, S. Nurullaev, Z. Babakhanova, G. AbdulKareem-Alsultan, Cu2+ removal from synthetic wastewater using amine-modified bentonites: Kinetics and thermodynamic study based on multilinear regression (MLR) modeling, J. Taiwan Inst. Chem. Eng. 166 (2025) 105481.

DOI: 10.1016/j.jtice.2024.105481

Google Scholar

[92] L. Zhang, P. Wang, X. Wang, Q. Zhang, Y. Wang, Y. Liu, X. Cui, Resource utilization of wastepaper and bentonite: Cu (II) removal in the aqueous environment, J. Environ. Manage. 353 (2024) 120213.

DOI: 10.1016/j.jenvman.2024.120213

Google Scholar

[93] R. Chen, B. Cai, R. Liu, W. Xu, X. Jin, L. Yu, Q. Yong, Synergistic and antagonistic adsorption mechanisms of copper (II) and cefazolin onto bio-based chitosan/humic composite: A combined experimental and theoretical study, J. Environ. Chem. Eng. 12(4) (2024) 113061.

DOI: 10.1016/j.jece.2024.113061

Google Scholar

[94] A. Marszałek, Encapsulation of halloysite with sodium alginate and application in the adsorption of copper from rainwater, Arch. Environ. Prot. 48(1) (2022) 75-82.

Google Scholar

[95] E. Langat, J.O. Omolo, P.O. Ongoma, Sugarcane Bagasse Based Adsorbents and their Adsorption Efficacy on Removal of Heavy Metals from Nakuru Industrial Wastewater: Optimization, Kinetic and Thermodynamic Aspects, Asian J. Appl. Chem. Res. 15(4) (2024) 10.9734.

DOI: 10.9734/ajacr/2024/v15i4311

Google Scholar

[96] K. Hummadi, L. Zhu, S. He, Bio-adsorption of heavy metals from aqueous solution using the ZnO-modified date pits, Sci. Rep. 13 (2023) 22779.

DOI: 10.1038/s41598-023-50278-y

Google Scholar

[97] B. Praveen, N. Guruprashanth, Appraisal of Characterization and Adsorption Isotherm in the Bioremediation of Cu and Zn Ions from Aqueous Solutions Exploiting Unmodified Corn and Coconut Husk, Curr. World Environ. 19(2) (2024) 763.

DOI: 10.12944/cwe.19.2.20

Google Scholar

[98] R. Chen, B. Cai, R. Liu, W. Xu, X. Jin, L. Yu, Q. Yong, Synergistic and antagonistic adsorption mechanisms of copper (II) and cefazolin onto bio-based chitosan/humic composite: A combined experimental and theoretical study, J. Environ. Chem. Eng. 12(4) (2024) 113061.

DOI: 10.1016/j.jece.2024.113061

Google Scholar

[99] H. Zare, H. Heydarzade, M. Rahimnejad, A. Tardast, M. Seyfi, S.M. Peyghambarzadeh, Dried activated sludge as an appropriate biosorbent for removal of copper (II) ions, Arab. J. Chem. 8(6) (2015) 858-864.

DOI: 10.1016/j.arabjc.2012.11.019

Google Scholar

[100] A. Eleryan, U.O. Aigbe, K.E. Ukhurebor, R.B. Onyancha, T.M. Eldeeb, M.A. El-Nemr, A. El Nemr, Copper (II) ion removal by chemically and physically modified sawdust biochar, Biomass Conv. Biorefinery 14(8) (2024) 9283-9320.

DOI: 10.1007/s13399-022-02918-y

Google Scholar