Optimization of the Osmosis Process for the Potabilization of Wadi Oum Er-Rbia Water: Analysis of Hydraulic and Quality Parameters

Article Preview

Abstract:

The main objective of this study is to optimize the reverse osmosis process in order to ensure the potabilization of water from the Oued Oum Er-Rbia, by determining the most influential parameters. To the best of our knowledge, this is the first study to apply daily PCA-based monitoring on Oued Oum Er-Rbia’s raw water to optimize membrane operation under Moroccan field conditions.To better understand the interactions between quality and hydraulic parameters influencing membrane performance, data were collected from Oued Oum Er-Rbia over multiple seasons. The parameters monitored included turbidity, salinity, temperature, and Silt Density Index (SDI), all known to affect fouling and pretreatment requirements.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1172)

Pages:

85-98

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Medina Collana, J., Ancieta Dextre, C., Rodríguez Taranco, O., Carrasco Venegas, L., Montaño Pisfil, J., Diaz Bravo, P., & Vásquez Llanos, S. (2024). Brackish Water Desalination by Nanofiltration – Effect of Process Parameters. Journal of Ecological Engineering, 25(8), 347–356

DOI: 10.12911/22998993/190165

Google Scholar

[2] Kim, J., Park, K., Yang, D. R., & Hong, S. (2019). A comprehensive review of energy consumption of seawater reverse osmosis desalination plants. Applied Energy, 254, 113652

DOI: 10.1016/j.apenergy.2019.113652

Google Scholar

[3] Kim, J., Park, K., Yang, D. R., & Hong, S. (2019). A comprehensive review of energy consumption of seawater reverse osmosis desalination plants. Applied Energy, 254, 113652

DOI: 10.1016/j.apenergy.2019.113652

Google Scholar

[4] Chaouk, H., Obeid, E., Halwani, J., Arayro, J., Mezher, R., Amine, S., Gazo Hanna, E., Mouhtady, O., & Younes, K. (2024). Application of Principal Component Analysis for the Elucidation of Operational Features for Pervaporation Desalination Performance of PVA-Based TFC Membrane. Processes, 12(7), 1502

DOI: 10.3390/pr12071502

Google Scholar

[5] Quatrini, E., et al. (2021). Monitoring a Reverse Osmosis Process with Kernel Principal Component Analysis: A Preliminary Approach. Applied Sciences, 11(14), 6370

DOI: 10.3390/app11146370

Google Scholar

[6] Di Pasquale, N., Akele, M., Municchi, F., King, J., & Icardi, M. (2023). Mathematical modelling and numerical simulation of reverse-osmosis desalination. arXiv preprint. https://arxiv.org/abs/2301.13160

Google Scholar

[7] Han, M., Yao, J., Law, A. W.-K., & Yin, X. (2024). Efficient Economic Model Predictive Control of Water Treatment Process with Learning-based Koopman Operator. arXiv preprint. https://arxiv.org/abs/2405.12478

DOI: 10.3850/iahr-hic2483430201-305

Google Scholar

[8] Maier, P. M., & Keller, S. (2018). Machine learning regression on hyperspectral data to estimate multiple water parameters. arXiv preprint. https://arxiv.org/abs/1805.01361

Google Scholar

[9] Aljassim, M. T., et al. (2024). Evaluating the Influence of Reverse Osmosis on Lakes Using Water Quality Indices: A Case Study in Saudi Arabia. Water, 16(10), 1351

DOI: 10.3390/w16101351

Google Scholar

[10] Jolliffe, I.T. (2002). Principal Component Analysis. Springer

DOI: 10.1007/b98835

Google Scholar

[11] Shlens, J. (2014). A Tutorial on Principal Component Analysis. arXiv:1404.1100

Google Scholar

[12] Baker, R. W. (2004). Membrane Technology and Applications. John Wiley & Sons

DOI: 10.1002/0470020393

Google Scholar

[13] Jolliffe, I. T. (2002). Principal Component Analysis. Springer

DOI: 10.1007/b98835

Google Scholar

[14] Shlens, J. (2014). A Tutorial on Principal Component Analysis. arXiv:1404.1100

Google Scholar

[15] Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202

DOI: 10.1098/rsta.2015.0202

Google Scholar

[16] Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433–459

DOI: 10.1002/wics.101

Google Scholar

[17] Jolliffe, I.T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202

DOI: 10.1098/rsta.2015.0202

Google Scholar

[18] Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433–459

DOI: 10.1002/wics.101

Google Scholar

[19] Baker, R. W. (2004). Membrane Technology and Applications (2nd ed.). John Wiley & Sons

DOI: 10.1002/0470020393

Google Scholar

[20] Lever, J., Krzywinski, M., & Altman, N. (2017). Principal component analysis. Nature Methods, 14(7), 641–642

DOI: 10.1038/nmeth.4346

Google Scholar

[21] El-Dessouky, H. T., & Ettouney, H. M. (2002). Fundamentals of Salt Water Desalination. Elsevier

DOI: 10.1016/B978-0-444-50810-2.X5000-3

Google Scholar

[22] Greenlee, L.F.,et al. (2009). Reverse osmosis desalination: Water sources, technology, and today's challenges. Water Research, 43(9), 2317-2348. https://doi.org/10.1016/j.watres. 2009.03.010

DOI: 10.1016/j.watres.2009.03.010

Google Scholar

[23] Khawaji, A. D., et al. (2008). Advances in seawater desalination technologies. Desalination, 221(1–3), 47–69

DOI: 10.1016/j.desal.2007.01.067

Google Scholar

[24] Greenlee, L. F., et al. (2009). Same as [22].

Google Scholar

[25] El-Marmar, M., Mabrouki, J., & Fekhaoui, M. (2023). Monitoring The Quality of a Reverse Osmosis System in The Energy Systems of The Milk Processing Plant. International Journal of Membrane Science and Technology, 10(3), 2695–2704

DOI: 10.15379/ijmst.v10i3.2022

Google Scholar

[26] Wilf, M., & Alt, S. (2000). Application of low fouling RO membrane elements for reclamation of municipal wastewater. Desalination, 132(1–3), 11–19

DOI: 10.1016/S0011-9164(00)00130-2

Google Scholar

[27] Wilf, M., & Alt, S. (2000). Application of low fouling RO membrane elements for reclamation of municipal wastewater. Desalination, 132(1–3), 11–19

DOI: 10.1016/S0011-9164(00)00130-2

Google Scholar

[28] Hughes, A. J., Mallick, T. K., & O'Donovan, T. S. (2020). Investigation of the Effects of Temperature on the Microstructure of PTFE Microfiltration Membranes Under Membrane Distillation Conditions. Journal of Advanced Thermal Science Research, 2020, 7, 11-21

DOI: 10.15377/2409-5826.2020.07.2

Google Scholar

[29] Hughes, A. J., Mallick, T. K., & O'Donovan, T. S. (2020). Investigation of the Effects of Temperature on the Microstructure of PTFE Microfiltration Membranes Under Membrane Distillation Conditions. Journal of Advanced Thermal Science Research, 2020, 7, 11-21

DOI: 10.15377/2409-5826.2020.07.2

Google Scholar

[30] Alkhudhiri, A., Darwish, N., & Hilal, N. (2012). Membrane distillation: A comprehensive review. Desalination, 287, 2–18

DOI: 10.1016/j.desal.2011.08.027

Google Scholar

[31] Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433–459

DOI: 10.1002/wics.101

Google Scholar

[32] Elimelech,M., & Phillip W.A. (2011). The future of seawater desalination: Energy, technology, and the environment. Science, 333(6043), 712–717. https://doi.org/10.1126/science. 1200488

DOI: 10.1126/science.1200488

Google Scholar

[33] Oganesian, D., & Agashichev, S. (2024). Impact of temperature on osmotic pressure, net driving force and transmembrane flux in RO at different degree of membrane rejection. SSRN Electronic Journal

DOI: 10.2139/ssrn.4945803

Google Scholar

[34] Baker, R. W. (2004). Membrane Technology and Applications. John Wiley & Sons

DOI: 10.1002/0470020393

Google Scholar

[35] Agashichev, S. P., & Lootah, K. N. (2003). Influence of temperature and permeate recovery on energy consumption of a reverse osmosis system. Desalination, 154(3), 253–266

DOI: 10.1016/S0011-9164(03)80041-3

Google Scholar

[36] Baker, R.W. (2004). Membrane Technology and Applications. John Wiley & Sons

DOI: 10.1002/0470020393

Google Scholar

[37] Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B., & Moulin, P. (2009). Reverse osmosis desalination: Water sources, technology, and today's challenges. Water Research, 43(9), 2317–2348

DOI: 10.1016/j.watres.2009.03.010

Google Scholar

[38] Fritzmann, C., Löwenberg, J., Wintgens, T., & Melin, T. (2007). State-of-the-art of reverse osmosis desalination. Desalination, 216(1–3), 1–76. https://doi.org/10.1016/j.desal. 2006.12.009

DOI: 10.1016/j.desal.2006.12.009

Google Scholar

[39] Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B., & Moulin, P. (2009). Reverse osmosis desalination: Water sources, technology, and today's challenges. Water Research, 43(9), 2317–2348

DOI: 10.1016/j.watres.2009.03.010

Google Scholar

[40] Baker, R. W. (2004). Membrane Technology and Applications. John Wiley & Sons

DOI: 10.1002/0470020393

Google Scholar

[41] Wilf, M., & Alt, S. (2000). Application of low fouling RO membrane elements for reclamation of municipal wastewater. Desalination, 132(1–3), 11–19

DOI: 10.1016/S0011-9164(00)00130-2

Google Scholar

[42] Khawaji, A. D., Kutubkhanah, I. K., & Wie, J.-M. (2008). Advances in seawater desalination technologies. Desalination, 221(1–3), 47–69

DOI: 10.1016/j.desal.2007.01.067

Google Scholar

[43] Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B., & Moulin, P. (2009). Reverse osmosis desalination: Water sources, technology, and today's challenges. Water Research, 43(9), 2317–2348

DOI: 10.1016/j.watres.2009.03.010

Google Scholar

[44] Fritzmann, C., Löwenberg, J., Wintgens, T., & Melin, T. (2007). State-of-the-art of reverse osmosis desalination. Desalination, 216(1–3), 1–76. https://doi.org/10.1016/j.desal. 2006.12.009

DOI: 10.1016/j.desal.2006.12.009

Google Scholar

[45] Khawaji, A. D., Kutubkhanah, I. K., & Wie, J.-M. (2008). Advances in seawater desalination technologies. Desalination, 221(1–3), 47–69

DOI: 10.1016/j.desal.2007.01.067

Google Scholar

[46] Fritzmann, C., Löwenberg, J., Wintgens, T., & Melin, T. (2007). State-of-the-art of reverse osmosis desalination. Desalination, 216(1–3), 1–76

DOI: 10.1016/j.desal.2006.12.009

Google Scholar

[47] Oganesian, D., & Agashichev, S. (2024). Impact of temperature on osmotic pressure, net driving force and transmembrane flux in RO at different degree of membrane rejection. SSRN Electronic Journal

DOI: 10.2139/ssrn.4945803

Google Scholar

[48] Agashichev, S. P., & Lootah, K. N. (2003). Influence of temperature and permeate recovery on energy consumption of a reverse osmosis system. Desalination, 154(3), 253–266

DOI: 10.1016/S0011-9164(03)80041-3

Google Scholar