[1]
Medina Collana, J., Ancieta Dextre, C., Rodríguez Taranco, O., Carrasco Venegas, L., Montaño Pisfil, J., Diaz Bravo, P., & Vásquez Llanos, S. (2024). Brackish Water Desalination by Nanofiltration – Effect of Process Parameters. Journal of Ecological Engineering, 25(8), 347–356
DOI: 10.12911/22998993/190165
Google Scholar
[2]
Kim, J., Park, K., Yang, D. R., & Hong, S. (2019). A comprehensive review of energy consumption of seawater reverse osmosis desalination plants. Applied Energy, 254, 113652
DOI: 10.1016/j.apenergy.2019.113652
Google Scholar
[3]
Kim, J., Park, K., Yang, D. R., & Hong, S. (2019). A comprehensive review of energy consumption of seawater reverse osmosis desalination plants. Applied Energy, 254, 113652
DOI: 10.1016/j.apenergy.2019.113652
Google Scholar
[4]
Chaouk, H., Obeid, E., Halwani, J., Arayro, J., Mezher, R., Amine, S., Gazo Hanna, E., Mouhtady, O., & Younes, K. (2024). Application of Principal Component Analysis for the Elucidation of Operational Features for Pervaporation Desalination Performance of PVA-Based TFC Membrane. Processes, 12(7), 1502
DOI: 10.3390/pr12071502
Google Scholar
[5]
Quatrini, E., et al. (2021). Monitoring a Reverse Osmosis Process with Kernel Principal Component Analysis: A Preliminary Approach. Applied Sciences, 11(14), 6370
DOI: 10.3390/app11146370
Google Scholar
[6]
Di Pasquale, N., Akele, M., Municchi, F., King, J., & Icardi, M. (2023). Mathematical modelling and numerical simulation of reverse-osmosis desalination. arXiv preprint. https://arxiv.org/abs/2301.13160
Google Scholar
[7]
Han, M., Yao, J., Law, A. W.-K., & Yin, X. (2024). Efficient Economic Model Predictive Control of Water Treatment Process with Learning-based Koopman Operator. arXiv preprint. https://arxiv.org/abs/2405.12478
DOI: 10.3850/iahr-hic2483430201-305
Google Scholar
[8]
Maier, P. M., & Keller, S. (2018). Machine learning regression on hyperspectral data to estimate multiple water parameters. arXiv preprint. https://arxiv.org/abs/1805.01361
Google Scholar
[9]
Aljassim, M. T., et al. (2024). Evaluating the Influence of Reverse Osmosis on Lakes Using Water Quality Indices: A Case Study in Saudi Arabia. Water, 16(10), 1351
DOI: 10.3390/w16101351
Google Scholar
[10]
Jolliffe, I.T. (2002). Principal Component Analysis. Springer
DOI: 10.1007/b98835
Google Scholar
[11]
Shlens, J. (2014). A Tutorial on Principal Component Analysis. arXiv:1404.1100
Google Scholar
[12]
Baker, R. W. (2004). Membrane Technology and Applications. John Wiley & Sons
DOI: 10.1002/0470020393
Google Scholar
[13]
Jolliffe, I. T. (2002). Principal Component Analysis. Springer
DOI: 10.1007/b98835
Google Scholar
[14]
Shlens, J. (2014). A Tutorial on Principal Component Analysis. arXiv:1404.1100
Google Scholar
[15]
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202
DOI: 10.1098/rsta.2015.0202
Google Scholar
[16]
Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433–459
DOI: 10.1002/wics.101
Google Scholar
[17]
Jolliffe, I.T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202
DOI: 10.1098/rsta.2015.0202
Google Scholar
[18]
Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433–459
DOI: 10.1002/wics.101
Google Scholar
[19]
Baker, R. W. (2004). Membrane Technology and Applications (2nd ed.). John Wiley & Sons
DOI: 10.1002/0470020393
Google Scholar
[20]
Lever, J., Krzywinski, M., & Altman, N. (2017). Principal component analysis. Nature Methods, 14(7), 641–642
DOI: 10.1038/nmeth.4346
Google Scholar
[21]
El-Dessouky, H. T., & Ettouney, H. M. (2002). Fundamentals of Salt Water Desalination. Elsevier
DOI: 10.1016/B978-0-444-50810-2.X5000-3
Google Scholar
[22]
Greenlee, L.F.,et al. (2009). Reverse osmosis desalination: Water sources, technology, and today's challenges. Water Research, 43(9), 2317-2348. https://doi.org/10.1016/j.watres. 2009.03.010
DOI: 10.1016/j.watres.2009.03.010
Google Scholar
[23]
Khawaji, A. D., et al. (2008). Advances in seawater desalination technologies. Desalination, 221(1–3), 47–69
DOI: 10.1016/j.desal.2007.01.067
Google Scholar
[24]
Greenlee, L. F., et al. (2009). Same as [22].
Google Scholar
[25]
El-Marmar, M., Mabrouki, J., & Fekhaoui, M. (2023). Monitoring The Quality of a Reverse Osmosis System in The Energy Systems of The Milk Processing Plant. International Journal of Membrane Science and Technology, 10(3), 2695–2704
DOI: 10.15379/ijmst.v10i3.2022
Google Scholar
[26]
Wilf, M., & Alt, S. (2000). Application of low fouling RO membrane elements for reclamation of municipal wastewater. Desalination, 132(1–3), 11–19
DOI: 10.1016/S0011-9164(00)00130-2
Google Scholar
[27]
Wilf, M., & Alt, S. (2000). Application of low fouling RO membrane elements for reclamation of municipal wastewater. Desalination, 132(1–3), 11–19
DOI: 10.1016/S0011-9164(00)00130-2
Google Scholar
[28]
Hughes, A. J., Mallick, T. K., & O'Donovan, T. S. (2020). Investigation of the Effects of Temperature on the Microstructure of PTFE Microfiltration Membranes Under Membrane Distillation Conditions. Journal of Advanced Thermal Science Research, 2020, 7, 11-21
DOI: 10.15377/2409-5826.2020.07.2
Google Scholar
[29]
Hughes, A. J., Mallick, T. K., & O'Donovan, T. S. (2020). Investigation of the Effects of Temperature on the Microstructure of PTFE Microfiltration Membranes Under Membrane Distillation Conditions. Journal of Advanced Thermal Science Research, 2020, 7, 11-21
DOI: 10.15377/2409-5826.2020.07.2
Google Scholar
[30]
Alkhudhiri, A., Darwish, N., & Hilal, N. (2012). Membrane distillation: A comprehensive review. Desalination, 287, 2–18
DOI: 10.1016/j.desal.2011.08.027
Google Scholar
[31]
Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433–459
DOI: 10.1002/wics.101
Google Scholar
[32]
Elimelech,M., & Phillip W.A. (2011). The future of seawater desalination: Energy, technology, and the environment. Science, 333(6043), 712–717. https://doi.org/10.1126/science. 1200488
DOI: 10.1126/science.1200488
Google Scholar
[33]
Oganesian, D., & Agashichev, S. (2024). Impact of temperature on osmotic pressure, net driving force and transmembrane flux in RO at different degree of membrane rejection. SSRN Electronic Journal
DOI: 10.2139/ssrn.4945803
Google Scholar
[34]
Baker, R. W. (2004). Membrane Technology and Applications. John Wiley & Sons
DOI: 10.1002/0470020393
Google Scholar
[35]
Agashichev, S. P., & Lootah, K. N. (2003). Influence of temperature and permeate recovery on energy consumption of a reverse osmosis system. Desalination, 154(3), 253–266
DOI: 10.1016/S0011-9164(03)80041-3
Google Scholar
[36]
Baker, R.W. (2004). Membrane Technology and Applications. John Wiley & Sons
DOI: 10.1002/0470020393
Google Scholar
[37]
Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B., & Moulin, P. (2009). Reverse osmosis desalination: Water sources, technology, and today's challenges. Water Research, 43(9), 2317–2348
DOI: 10.1016/j.watres.2009.03.010
Google Scholar
[38]
Fritzmann, C., Löwenberg, J., Wintgens, T., & Melin, T. (2007). State-of-the-art of reverse osmosis desalination. Desalination, 216(1–3), 1–76. https://doi.org/10.1016/j.desal. 2006.12.009
DOI: 10.1016/j.desal.2006.12.009
Google Scholar
[39]
Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B., & Moulin, P. (2009). Reverse osmosis desalination: Water sources, technology, and today's challenges. Water Research, 43(9), 2317–2348
DOI: 10.1016/j.watres.2009.03.010
Google Scholar
[40]
Baker, R. W. (2004). Membrane Technology and Applications. John Wiley & Sons
DOI: 10.1002/0470020393
Google Scholar
[41]
Wilf, M., & Alt, S. (2000). Application of low fouling RO membrane elements for reclamation of municipal wastewater. Desalination, 132(1–3), 11–19
DOI: 10.1016/S0011-9164(00)00130-2
Google Scholar
[42]
Khawaji, A. D., Kutubkhanah, I. K., & Wie, J.-M. (2008). Advances in seawater desalination technologies. Desalination, 221(1–3), 47–69
DOI: 10.1016/j.desal.2007.01.067
Google Scholar
[43]
Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B., & Moulin, P. (2009). Reverse osmosis desalination: Water sources, technology, and today's challenges. Water Research, 43(9), 2317–2348
DOI: 10.1016/j.watres.2009.03.010
Google Scholar
[44]
Fritzmann, C., Löwenberg, J., Wintgens, T., & Melin, T. (2007). State-of-the-art of reverse osmosis desalination. Desalination, 216(1–3), 1–76. https://doi.org/10.1016/j.desal. 2006.12.009
DOI: 10.1016/j.desal.2006.12.009
Google Scholar
[45]
Khawaji, A. D., Kutubkhanah, I. K., & Wie, J.-M. (2008). Advances in seawater desalination technologies. Desalination, 221(1–3), 47–69
DOI: 10.1016/j.desal.2007.01.067
Google Scholar
[46]
Fritzmann, C., Löwenberg, J., Wintgens, T., & Melin, T. (2007). State-of-the-art of reverse osmosis desalination. Desalination, 216(1–3), 1–76
DOI: 10.1016/j.desal.2006.12.009
Google Scholar
[47]
Oganesian, D., & Agashichev, S. (2024). Impact of temperature on osmotic pressure, net driving force and transmembrane flux in RO at different degree of membrane rejection. SSRN Electronic Journal
DOI: 10.2139/ssrn.4945803
Google Scholar
[48]
Agashichev, S. P., & Lootah, K. N. (2003). Influence of temperature and permeate recovery on energy consumption of a reverse osmosis system. Desalination, 154(3), 253–266
DOI: 10.1016/S0011-9164(03)80041-3
Google Scholar