[1]
B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng., A 375-377 (2004) 213–218.
DOI: 10.1016/j.msea.2003.10.257
Google Scholar
[2]
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299–303.
DOI: 10.1002/adem.200300567
Google Scholar
[3]
B.S. Murty, J.-W. Yeh, S. Ranganathan, High-entropy Alloys, first ed., Elsevier, 2014.
Google Scholar
[4]
O.N. Senkov, J.M. Scotta, S.V. Senkova, D.B. Miracle, C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloy. Compd. 509 (2011) 6043–6048.
DOI: 10.1016/j.jallcom.2011.02.171
Google Scholar
[5]
O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys Intermetallics 19 (2011) 698–706.
DOI: 10.1016/j.intermet.2011.01.004
Google Scholar
[6]
M. Todai, T. Nagase, T. Hori, A. Matsugaki, A. Sekita, T. Nakano, Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials, Scripta Materialia 129 (2017) 65-68.
DOI: 10.1016/j.scriptamat.2016.10.028
Google Scholar
[7]
T. Hori, T. Nagase, M. Todai, A. Matsugaki, T. Nakano, Development of Non-equiatomic Ti-Nb-Ta-Zr-Mo High-Entropy Alloys for Metallic Biomaterials, Scripta Materialia 172 (2019) 83–87.
DOI: 10.1016/j.scriptamat.2019.07.011
Google Scholar
[8]
T. Nagase, M. Todai, T. Hori, T. Nakano, Microstructure of equiatomic and non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials, Journal of Alloys and Compounds, 753 (2018) 412–421.
DOI: 10.1016/j.jallcom.2018.04.082
Google Scholar
[9]
T. Nagase, M. Todai, S. Ichikawa, A. Matsugaki, T. Nakano, Alloy Design and Solidification Microstructure of Ti-Zr-Hf-Ag-V Multi-Component Alloys with a Dual Bcc Structure, Materials Transactions, 65[9] 2024 1041–1048.
DOI: 10.2320/matertrans.mt-ma2024009
Google Scholar
[10]
T. Nagase, M. Todai, T. Nakano, Liquid phase separation in Co-Cr-Fe-Mn-Ni-Ag and Co-Cr-Fe-Mn-Ni-Cu High entropy alloys, Crystals 10 (2020) 527
DOI: 10.3390/cryst10060527
Google Scholar
[11]
T. Nagase, M. Todai, T. Nakano, Development of Co-Cr-Mo-Fe-Mn-W and Co-Cr-Mo-Fe-Mn-W-Ag High-Entropy Alloys Based on Co-Cr-Mo alloys, Materials Transactions 61 (2020) 567–576.
DOI: 10.2320/matertrans.mt-mk2019002
Google Scholar
[12]
T. Nagase, M. Todai, T. Nakano, Development of Ti-Zr-Hf-Y-La high-entropy alloys with dual hexagonal-close-packed structure, Scripta Materialia 186 (2020) 242-246.
DOI: 10.1016/j.scriptamat.2020.05.033
Google Scholar
[13]
M. Todai, K. Hagihara, T. Ishimoto, K. Yamamoto, T. Nakano, Development of Single Crystalline Bone Plate with Low Young's Modulus Using Beta-type Ti-15Mo-5Zr-3Al Alloy, Tetsu-to-Hagane 101 (2015) 501–505.
DOI: 10.2355/tetsutohagane.tetsu-2015-044
Google Scholar
[14]
N.E. Koval, J.I. Juaristi, R.D. Muino, M. Alducin, Elastic properties of the TiZrNbTaMo multi-principal element alloy studied from first principles, Intermetallics 106 (2019) 130–140.
DOI: 10.1016/j.intermet.2018.12.014
Google Scholar
[15]
T. Nagase, M. Matsumoto, Y. Fujii, Microstructure of Ti-Ag immiscible alloys with liquid phase separation, J. of Alloys and Compounds 738 (2018) 440–447.
DOI: 10.1016/j.jallcom.2017.12.138
Google Scholar