Microstructure and Young's Modulus of (TiZr)2-x(NbTaMo)x Bio-High Entropy Alloys

Article Preview

Abstract:

In recent years, high-entropy alloys (HEAs) have attracted significant attention owing to their remarkable physical properties such as high strength. It has also been reported that HEAs have a high potential as biomaterials. Bcc-type bio-HEAs possess high strength and biocompatibility equivalent to those of pure titanium. Bio-metallic materials require a low Young's modulus, similar to that of natural bone, but the Young's modulus of bio-high entropy alloys has not yet been clarified. Therefore, this study elucidates the relationship between microstructure control and Young's modulus in titanium-based bio-HEAs. The TiNbTaZrMo-based bio-HEAs were composed of two bcc phases. These two phases correspond to dendrite and interdendrite structures, respectively. In this study, it was found that by varying the volume fractions of these two phases, it is possible to control the Young's modulus.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1175)

Pages:

85-90

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng., A 375-377 (2004) 213–218.

DOI: 10.1016/j.msea.2003.10.257

Google Scholar

[2] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299–303.

DOI: 10.1002/adem.200300567

Google Scholar

[3] B.S. Murty, J.-W. Yeh, S. Ranganathan, High-entropy Alloys, first ed., Elsevier, 2014.

Google Scholar

[4] O.N. Senkov, J.M. Scotta, S.V. Senkova, D.B. Miracle, C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloy. Compd. 509 (2011) 6043–6048.

DOI: 10.1016/j.jallcom.2011.02.171

Google Scholar

[5] O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys Intermetallics 19 (2011) 698–706.

DOI: 10.1016/j.intermet.2011.01.004

Google Scholar

[6] M. Todai, T. Nagase, T. Hori, A. Matsugaki, A. Sekita, T. Nakano, Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials, Scripta Materialia 129 (2017) 65-68.

DOI: 10.1016/j.scriptamat.2016.10.028

Google Scholar

[7] T. Hori, T. Nagase, M. Todai, A. Matsugaki, T. Nakano, Development of Non-equiatomic Ti-Nb-Ta-Zr-Mo High-Entropy Alloys for Metallic Biomaterials, Scripta Materialia 172 (2019) 83–87.

DOI: 10.1016/j.scriptamat.2019.07.011

Google Scholar

[8] T. Nagase, M. Todai, T. Hori, T. Nakano, Microstructure of equiatomic and non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials, Journal of Alloys and Compounds, 753 (2018) 412–421.

DOI: 10.1016/j.jallcom.2018.04.082

Google Scholar

[9] T. Nagase, M. Todai, S. Ichikawa, A. Matsugaki, T. Nakano, Alloy Design and Solidification Microstructure of Ti-Zr-Hf-Ag-V Multi-Component Alloys with a Dual Bcc Structure, Materials Transactions, 65[9] 2024 1041–1048.

DOI: 10.2320/matertrans.mt-ma2024009

Google Scholar

[10] T. Nagase, M. Todai, T. Nakano, Liquid phase separation in Co-Cr-Fe-Mn-Ni-Ag and Co-Cr-Fe-Mn-Ni-Cu High entropy alloys, Crystals 10 (2020) 527

DOI: 10.3390/cryst10060527

Google Scholar

[11] T. Nagase, M. Todai, T. Nakano, Development of Co-Cr-Mo-Fe-Mn-W and Co-Cr-Mo-Fe-Mn-W-Ag High-Entropy Alloys Based on Co-Cr-Mo alloys, Materials Transactions 61 (2020) 567–576.

DOI: 10.2320/matertrans.mt-mk2019002

Google Scholar

[12] T. Nagase, M. Todai, T. Nakano, Development of Ti-Zr-Hf-Y-La high-entropy alloys with dual hexagonal-close-packed structure, Scripta Materialia 186 (2020) 242-246.

DOI: 10.1016/j.scriptamat.2020.05.033

Google Scholar

[13] M. Todai, K. Hagihara, T. Ishimoto, K. Yamamoto, T. Nakano, Development of Single Crystalline Bone Plate with Low Young's Modulus Using Beta-type Ti-15Mo-5Zr-3Al Alloy, Tetsu-to-Hagane 101 (2015) 501–505.

DOI: 10.2355/tetsutohagane.tetsu-2015-044

Google Scholar

[14] N.E. Koval, J.I. Juaristi, R.D. Muino, M. Alducin, Elastic properties of the TiZrNbTaMo multi-principal element alloy studied from first principles, Intermetallics 106 (2019) 130–140.

DOI: 10.1016/j.intermet.2018.12.014

Google Scholar

[15] T. Nagase, M. Matsumoto, Y. Fujii, Microstructure of Ti-Ag immiscible alloys with liquid phase separation, J. of Alloys and Compounds 738 (2018) 440–447.

DOI: 10.1016/j.jallcom.2017.12.138

Google Scholar