[1]
C. Zhang, Z. Qiu, H. Zhu, et al., Microstructure and mechanical properties of bulked-wall Inconel 625 through wire and arc-based additive manufacturing, Prog Add Manuf (2025).
DOI: 10.1007/s40964-025-01035-2
Google Scholar
[2]
G. Bryndza, J.T. Tchuindjang, F. Chen, et al., Review of the Microstructural Impact on Creep Mechanisms and Performance for Laser Powder Bed Fusion Inconel 718, Materials 18 (2025) 276.
DOI: 10.3390/ma18020276
Google Scholar
[3]
Ó. Teixeira, F.J.G. Silva, E. Atzeni, Residual stresses and heat treatments of Inconel 718 parts manufactured via metal laser beam powder bed fusion, Int J Adv. Manuf. Tech. 113 (2021) 3139.
DOI: 10.1007/s00170-021-06835-8
Google Scholar
[4]
J. Al‐Lami, T. Dessolier, S.R. Rogers, T. Pirzada, M. Pham, Dislocation Distribution, Crystallographic Texture Evolution, and Plastic Inhomogeneity of Inconel 718 Fabricated by Laser Powder Bed Fusion, Adv Eng Mater (2024).
DOI: 10.1002/adem.202400524
Google Scholar
[5]
T.G. Gallmeyer, S. Moorthy, B.B. Kappes, M.J. Mills, B. Amin-Ahmadi, A.P. Stebner, Knowledge of process-structure-property relationships to engineer better heat treatments for laser powder bed fusion additive manufactured Inconel 718, Addit Manuf 31 (2020) 100977.
DOI: 10.1016/j.addma.2019.100977
Google Scholar
[6]
O. Sifi, M.E.A. Djeghlal, Y. Mebdoua, S. Djeraf, F. Hadj-Larbi, The effect of the solution and aging treatments on the microstructures and microhardness of nickel-based superalloy, Applied Physics A 126 (2020) 345.
DOI: 10.1007/s00339-020-03517-2
Google Scholar
[7]
M. Sundararaman, P. Mukhopadhyay, Overlapping of γ' precipitate variants in Inconel 718, Mater Charact 31 (1993) 191–196.
DOI: 10.1016/1044-5803(93)90062-z
Google Scholar
[8]
R.Y. Zhang, H.L. Qin, Z.N. Bi, et al., Dong, Evolution of Lattice Spacing of Gamma Double Prime Precipitates During Aging of Polycrystalline Ni-Base Superalloys: An In Situ Investigation, Metall Mater Trans A 51 (2020) 574–585.
DOI: 10.1007/s11661-019-05536-y
Google Scholar
[9]
M. Sundararaman, P. Mukhopadhyay, S. Banerjee, Precipitation of the δ-Ni3Nb phase in two nickel base superalloys, Metall Trans A 19 (1988) 453–465.
DOI: 10.1007/bf02649259
Google Scholar
[10]
R.J. Vikram, S.T. Reddy, A. Kirchner, B. Klöden, S. Suwas, Monotonic tension and creep response of electron-beam powder bed fusion processed IN718 superalloy: Role of orthorhombic Ni3Nb δ-phase at grain boundaries, Mater Sci Eng: A 925 (2025) 147728.
DOI: 10.1016/j.msea.2024.147728
Google Scholar
[11]
J.J. Schirra, R.H. Caless, R.W. Hatala, The Effect of Laves Phase on the Mechanical Properties of Wrought and Cast + HIP Inconel 718, in: Superalloys 718, 625 and Various Derivatives (1991), TMS (1991) 375–388.
DOI: 10.7449/1991/superalloys_1991_375_388
Google Scholar
[12]
S.G.K. Manikandan, D. Sivakumar, M. Kamaraj, K.P. Rao, Laves Phase Control in Inconel 718 Weldments, Mater Sci Forum 710 (2012) 614–619.
DOI: 10.4028/www.scientific.net/msf.710.614
Google Scholar
[13]
A. Hamada, S. Ghosh, T. Rautio, et al., Strengthening and embrittlement mechanisms in laser-welded additively manufactured Inconel 718 superalloy, Weld World 69 (2025) 81–98.
DOI: 10.1007/s40194-024-01897-0
Google Scholar