[1]
B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375–377 (2004) 213–218.
DOI: 10.1016/j.msea.2003.10.257
Google Scholar
[2]
J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299–303.
DOI: 10.1002/adem.200300567
Google Scholar
[3]
B. Cantor, Multicomponent high-entropy Cantor alloys, Prog. Mater. Sci. 120 (2021) 100754.
DOI: 10.1016/j.pmatsci.2020.100754
Google Scholar
[4]
M.-H. Tsai, J.-W. Yeh, High-entropy alloys: A critical review, Mater. Res. Lett. 2 (2014) 107–123.
DOI: 10.1080/21663831.2014.912690
Google Scholar
[5]
Z. Zeng, M. Xiang, D. Zhang, J. Shi, W. Wang, X. Tang, W. Tang, Y. Wang, X. Ma, Z. Chen, W. Ma, K. Morita, Mechanical properties of Cantor alloys driven by additional elements: A review, J. Mater. Res. Technol. 15 (2021) 1920–1934.
DOI: 10.1016/j.jmrt.2021.09.019
Google Scholar
[6]
D. Bajaj, A.H. Feng, D.Y. Li, D.L. Chen, Compressive deformation of 3D-printed CrMnFeCoNi alloy, in: Proceedings of the 63rd Conference of Metallurgists, COM 2024, Springer Nature Switzerland, Cham, 2025: p.15–17.
DOI: 10.1007/978-3-031-67398-6_3
Google Scholar
[7]
Z.U. Arif, M.Y. Khalid, E. ur Rehman, Laser-aided additive manufacturing of high entropy alloys: Processes, properties, and emerging applications, J. Manuf. Process. 78 (2022) 131–171.
DOI: 10.1016/j.jmapro.2022.04.014
Google Scholar
[8]
Z.G. Zhu, Q.B. Nguyen, F.L. Ng, X.H. An, X.Z. Liao, P.K. Liaw, S.M.L. Nai, J. Wei, Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting, Scr. Mater. 154 (2018) 20–24.
DOI: 10.1016/j.scriptamat.2018.05.015
Google Scholar
[9]
S. Zhao, Z. Li, C. Zhu, W. Yang, Z. Zhang, D.E.J. Armstrong, P.S. Grant, R.O. Ritchie, M.A. Meyers, Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy, Sci. Adv. 7 (2021).
DOI: 10.1126/sciadv.abb3108
Google Scholar
[10]
D. Bajaj, Z. Chen, S.J. Qu, A.H. Feng, D.Y. Li, D.L. Chen, Distinct origins of deformation twinning in an additively-manufactured high-entropy alloy, Addit. Manuf. 74 (2023) 103716.
DOI: 10.1016/j.addma.2023.103716
Google Scholar
[11]
L. Rémy, The interaction between slip and twinning systems and the influence of twinning on the mechanical behavior of fcc metals and alloys, Metall. Trans. A 12 (1981) 387–408.
DOI: 10.1007/BF02648536
Google Scholar
[12]
Y. Chen, B. Li, B. Chen, F. Xuan, High-cycle fatigue induced twinning in CoCrFeNi high-entropy alloy processed by laser powder bed fusion additive manufacturing, Addit. Manuf. 61 (2023) 103319.
DOI: 10.1016/j.addma.2022.103319
Google Scholar
[13]
D. Bajaj, A.H. Feng, S.J. Qu, Z. Chen, D.Y. Li, D.L. Chen, Deformation behavior of 3D‐printed high‐entropy alloys: A critical review, Adv. Eng. Mater. 26 (2024) 2300615.
DOI: 10.1002/adem.202300615
Google Scholar