[1]
P. Das, A. Maiti, Gravity cast in-situ Al-15Mg2Si-4.5Si composite and a process thereof, Patent no.: 403839, Application on no.: IN 201811015624 (2022).
Google Scholar
[2]
P. Das, T. Ray, S. Sarkar, S. Das, Rheo Gravity die cast in-situ Al-15Mg2Si-4.5Si-0.01Sr-0.015B composite and an Automobile Brake disc cast thereof, Patent No 533358, Application on no.: IN 201911012127 (2024).
Google Scholar
[3]
C. Li, Y.Y. Wu, H. Li, X.F. Liu, Morphological evolution and growth mechanism of primary Mg2Si phase in Al–Mg2Si alloys, Acta Mater. 59 (2011) 1058–1067.
DOI: 10.1016/j.actamat.2010.10.036
Google Scholar
[4]
I. Mukherjee and P. Das, Phase field model of semi solid slurry generation and isothermal coarsening of novel Al-15Mg2Si-4.5Si composite, Metall. Mater. Trans. B 55B (2024) 3711-3735.
DOI: 10.1007/s11663-024-03212-0
Google Scholar
[5]
J. Eiken, B. Bottger, and I. Steinbach, Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application, Phys. Rev. E 73 (2006) 066122.
DOI: 10.1103/physreve.73.066122
Google Scholar
[6]
B. Bottger, J. Eiken, and I. Steinbach: Acta Mater., 2006, vol. 54, p.2697–2704.
Google Scholar
[7]
I. Steinbach: Modelling Simul. Mater. Sci. Eng., 2009, Vol. 17, p.073001 (1-31).
Google Scholar
[8]
I. Mukherjee, P. Das, A novel atomistic approach of estimating interfacial free energy and growth kinetics of primary Mg2Si during semi solid slurry formation of the novel Al–15Mg2Si–4.5Si composite, Appl. Phys. A 130 (2024) 338.
DOI: 10.1007/s00339-024-07499-3
Google Scholar
[9]
I. Mukherjee and P. Das, Microstructure evolution during solidification in a low superheat casting process of the Al-Mg2Si composites having excess Si: A phase field study, Materials Today Communications, 40 (2024) 109620.
DOI: 10.1016/j.mtcomm.2024.109620
Google Scholar
[10]
C. Li, C. Wang, H. Ju, Xue-Na Xue, M. Zha, Hui-Yuan Wang, Prediction of modified morphology for primary Mg2Si induced by trace-element adsorption: A first-principles study, Materialia 14 (2020) 100875.
DOI: 10.1016/j.mtla.2020.100875
Google Scholar
[11]
P Das, SK Samanta, B Mondal, P Dutta, Multiphase model of semisolid slurry generation and isothermal holding during cooling slope rheoprocessing of A356 Al alloy, Metallurgical and Materials Transactions B 49 (2018) 1925-1944.
DOI: 10.1007/s11663-018-1211-1
Google Scholar
[12]
P. Das, Microstructure evolution during Rheoprocessing of A356 Al alloy using cooling slope, International Journal of Metalcasting, 17(3) (2023) 1982-2001.
DOI: 10.1007/s40962-022-00908-4
Google Scholar
[13]
P. Das, P. Dutta, Three-dimensional phase field simulation of spheroidal grain formation during semi solid processing of Al–7Si–0.3Mg alloy. Comput. Mater. Sci. 184 (2020) 109856.
DOI: 10.1016/j.commatsci.2020.109856
Google Scholar
[14]
Q.D. Qin, Y.G. Zhao, C. Liu, P.J. Cong, and W. Zhou, Strontium modification and formation of cubic primary Mg2Si crystals in Mg2Si/Al composite, J. Alloys Compd. 454 (2008) 142-146.
DOI: 10.1016/j.jallcom.2006.12.074
Google Scholar
[15]
P. Das, M.A. Sultan, Effect of Strontium Addition on Semi-Solid Slurry Generation of Novel Al–15Mg2Si–4.5Si Composite During Cooling Slope Rheoprocessing, Trans Indian Inst Met (2024) 77(10) (2024) 2965–2970.
DOI: 10.1007/s12666-023-03183-x
Google Scholar
[16]
〈www.micress.rwth-aachen.de〉
Google Scholar
[17]
〈www.thermocalc.com〉
Google Scholar
[18]
M.G. Mecozzi, M. Militzer, J. Sietsma, and S. Van Der Zwaag, The Role of Nucleation Behavior in Phase-Field Simulations of the Austenite to Ferrite Transformation, Metall. Mater. Trans. A 39 (2008) 1237–1247.
DOI: 10.1007/s11661-008-9517-2
Google Scholar
[19]
I. Mukherjee and P. Das, Effect of fluid flow on microstructure evolution during Rheo Gravity die casting of Novel Al-15Mg2Si-4.5Si composite, Transactions of the Indian Institute of Metals, 77 (2024) 3051.
DOI: 10.1007/s12666-023-03217-4
Google Scholar