Structure of Ta2O5 containing Phosphate Invert Glasses Prepared by Liquid Phase Method

Article Preview

Abstract:

Tantalum-containing phosphate invert glasses were prepared using a liquid phase method under ambient conditions. In our previous study, the ion-releasing behavior (i.e. chemical durability) of phosphate glasses was controlled by the amount of intermediate oxides. In this work, Ta2O5 (intermediate oxide) was used to improve the chemical durability of the glasses. Ta-containing phosphate invert glasses were prepared and their structures were characterized. X-ray diffraction (XRD) patterns of the glasses exhibited broad halos, indicating an amorphous state. The amount of P2O5 in the glasses increased with increasing Ta2O5 content, while the amount of CaO decreased. The glasses prepared with a nominal P : Ta molar ratio of 2 : 1 showed a value of 1.87 : 1. Thus, almost all the Ta used in the synthesis was contained in the resulting glass. Raman spectra showed bands corresponding to short phosphate units such as ortho-and pyrophosphate, and the P-O-P peak was blue-shifted with increasing Ta2O5 content. The P-O-Ta bonds were formed with TaO4 tetrahedra, as new peaks at 970 cm-1 (P-O-Ta bonds) and 825 cm-1 (observed in YTaO4) were observed. The glasses containing higher amounts of Ta2O5 exhibited TaO6-rich phases, as shown by the Raman band at 630 cm-1 (Ta-O-Ta bonds) and broad XRD peaks at 2θ = 5 ~ 10°. Therefore, Ta in the phosphate invert glasses prepared by the liquid-phase method crosslinks phosphate units in the form of TaO4 tetrahedra, and the excess Ta exists in the form of TaO6 octahedra as a network modifier and/or Ta2O5-rich phase.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1176)

Pages:

47-52

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.C. Knowles, Phosphate based glasses for biomedical applications, J. Mater. Chem., 13 (2003) 2395-2401.

Google Scholar

[2] A. Yamamoto, R. Honma, M. Sumita, Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells, J. Biomed. Mater. Res., 39 (1998) 331-340.

DOI: 10.1002/(sici)1097-4636(199802)39:2<331::aid-jbm22>3.0.co;2-e

Google Scholar

[3] S. Lee, Calcium Phosphate Invert Glasses, in: A. Obata, D.S. Brauer, T. Kasuga (Eds.) Phosphate and Borate Bioactive Glasses, The Royal Society of Chemistry, 2022.

DOI: 10.1039/9781839164750

Google Scholar

[4] S. Lee, H. Maeda, A. Obata, K. Ueda, T. Narushima, T. Kasuga, Structures and dissolution behaviors of CaO–P2O5–TiO2/Nb2O5 (Ca/P≥1) invert glasses, J. Non-Cryst. Solids, 426 (2015) 35-42.

DOI: 10.1016/j.jnoncrysol.2015.06.024

Google Scholar

[5] S. Lee, S. Shiraki, M. Takahashi, A. Obata, M. Sakurai, F. Nagata, Preparation and structure of titanium-containing pyrophosphate glasses prepared using the liquid-phase method, J. Am. Ceram. Soc., 108 (2025) e20144.

DOI: 10.1111/jace.20144

Google Scholar

[6] M. Takahashi, S. Shiraki, S. Lee, A. Obata, Niobium-Containing Phosphate Glasses Prepared by the Liquid-Phase Method, Int. J. Mol. Sci., 26 (2025) 161.

DOI: 10.3390/ijms26010161

Google Scholar

[7] J. Wu, K. Ueda, T. Narushima, Fabrication of Ag and Ta co-doped amorphous calcium phosphate coating films by radiofrequency magnetron sputtering and their antibacterial activity, Materials Science and Engineering: C, 109 (2020) 110599.

DOI: 10.1016/j.msec.2019.110599

Google Scholar

[8] A.M.F. Alhalawani, M.R. Towler, A novel tantalum-containing bioglass. Part I. Structure and solubility, Materials Science and Engineering: C, 72 (2017) 202-211.

DOI: 10.1016/j.msec.2016.11.066

Google Scholar

[9] M. Siodmiak, G. Frenking, A. Korkin, Initial Reactions in Chemical Vapor Deposition of Ta2O5 from TaCl5 and H2O. An Ab Initio Study, J. Phys. Chem. A, 104 (2000) 1186-1195.

DOI: 10.1016/s1369-8001(00)00010-x

Google Scholar

[10] M.J. Ungerer, C.G.C.E. van Sittert, D.J. van der Westhuizen, H.M. Krieg, Molecular modelling of tantalum penta-halides during hydrolysis and oxidation reactions, Comput. Theor. Chem., 1090 (2016) 112-119.

DOI: 10.1016/j.comptc.2016.06.011

Google Scholar

[11] L.M. Marcondes, S. Maestri, B.P. de Sousa, C.R. da Cunha, R.O. Evangelista, D. Manzani, F.C. Cassanjes, G.Y. Poirier, Transparent glass and glass-ceramic in the binary system NaPO3-Ta2O5, J. Am. Ceram. Soc., 103 (2020) 1647-1655.

DOI: 10.1111/jace.16885

Google Scholar

[12] H. Segawa, N. Akagi, T. Yano, S. Shibata, Properties and structures of TiO2-ZnO-P2O5 glasses, J. Ceram. Soc. Jpn., 118 (2010) 278-282.

DOI: 10.2109/jcersj2.118.278

Google Scholar

[13] Y. Li, W. Weng, J.D. Santos, A.M. Lopes, Structural studies of Na2O–TiO2–CaO–P2O5 system glasses investigated by FTIR and FT-Raman, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B, 49 (2008) 41-45.

Google Scholar

[14] S.M. Hsu, J.J. Wu, S.W. Yung, T.S. Chin, T. Zhang, Y.M. Lee, C.M. Chu, J.Y. Ding, Evaluation of chemical durability, thermal properties and structure characteristics of Nb–Sr-phosphate glasses by Raman and NMR spectroscopy, J. Non-Cryst. Solids, 358 (2012) 14-19.

DOI: 10.1016/j.jnoncrysol.2011.08.006

Google Scholar

[15] T. Tsuchiya, H. Imai, S. Miyoshi, P.-A. Glans, J. Guo, S. Yamaguchi, X-Ray absorption, photoemission spectroscopy, and Raman scattering analysis of amorphous tantalum oxide with a large extent of oxygen nonstoichiometry, PCCP, 13 (2011) 17013-17018.

DOI: 10.1039/c1cp21310e

Google Scholar

[16] J. Wang, Q. Zheng, X. Shi, D. Li, Y. Yang, C. Li, J. Feng, Microstructural evolution and thermal-physical properties of YTaO4 coating after high-temperature exposure, Surf. Coat. Technol., 456 (2023) 129222.

DOI: 10.1016/j.surfcoat.2022.129222

Google Scholar

[17] K.P.F. Siqueira, A.P. Carmo, M.J.V. Bell, A. Dias, Optical properties of undoped NdTaO4, ErTaO4 and YbTaO4 ceramics, J. Lumin., 179 (2016) 146-153.

Google Scholar

[18] J. Feng, S. Shian, B. Xiao, D.R. Clarke, First-principles calculations of the high-temperature phase transformation in yttrium tantalate, Physical Review B, 90 (2014) 094102.

DOI: 10.1103/physrevb.90.094102

Google Scholar

[19] A. Dietzel, Die Kationenfeldstärken und ihre Beziehungen zu Entglasungsvorgängen, zur Verbindungsbildung und zu den Schmelzpunkten von Silicaten, Z. Elektrochem., 48 (1942) 9-23.

DOI: 10.1002/bbpc.19420480104

Google Scholar

[20] T. Komatsu, T. Honma, T. Tasheva, V. Dimitrov, Structural role of Nb2O5 in glass-forming ability, electronic polarizability and nanocrystallization in glasses: A review, J. Non-Cryst. Solids, 581 (2022) 121414.

DOI: 10.1016/j.jnoncrysol.2022.121414

Google Scholar

[21] H. Maeda, S. Lee, T. Miyajima, A. Obata, K. Ueda, T. Narushima, T. Kasuga, Structure and physicochemical properties of CaO-P2O5-Nb2O5-Na2O glasses, J. Non-Cryst. Solids, 432 (2016) 60-64.

DOI: 10.1016/j.jnoncrysol.2015.06.003

Google Scholar

[22] G.B. Rouse, P.J. Miller, W.M. Risen, Mixed alkali glass spectra and structure, J. Non-Cryst. Solids, 28 (1978) 193-207.

DOI: 10.1016/0022-3093(78)90006-6

Google Scholar