[1]
J.C. Knowles, Phosphate based glasses for biomedical applications, J. Mater. Chem., 13 (2003) 2395-2401.
Google Scholar
[2]
A. Yamamoto, R. Honma, M. Sumita, Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells, J. Biomed. Mater. Res., 39 (1998) 331-340.
DOI: 10.1002/(sici)1097-4636(199802)39:2<331::aid-jbm22>3.0.co;2-e
Google Scholar
[3]
S. Lee, Calcium Phosphate Invert Glasses, in: A. Obata, D.S. Brauer, T. Kasuga (Eds.) Phosphate and Borate Bioactive Glasses, The Royal Society of Chemistry, 2022.
DOI: 10.1039/9781839164750
Google Scholar
[4]
S. Lee, H. Maeda, A. Obata, K. Ueda, T. Narushima, T. Kasuga, Structures and dissolution behaviors of CaO–P2O5–TiO2/Nb2O5 (Ca/P≥1) invert glasses, J. Non-Cryst. Solids, 426 (2015) 35-42.
DOI: 10.1016/j.jnoncrysol.2015.06.024
Google Scholar
[5]
S. Lee, S. Shiraki, M. Takahashi, A. Obata, M. Sakurai, F. Nagata, Preparation and structure of titanium-containing pyrophosphate glasses prepared using the liquid-phase method, J. Am. Ceram. Soc., 108 (2025) e20144.
DOI: 10.1111/jace.20144
Google Scholar
[6]
M. Takahashi, S. Shiraki, S. Lee, A. Obata, Niobium-Containing Phosphate Glasses Prepared by the Liquid-Phase Method, Int. J. Mol. Sci., 26 (2025) 161.
DOI: 10.3390/ijms26010161
Google Scholar
[7]
J. Wu, K. Ueda, T. Narushima, Fabrication of Ag and Ta co-doped amorphous calcium phosphate coating films by radiofrequency magnetron sputtering and their antibacterial activity, Materials Science and Engineering: C, 109 (2020) 110599.
DOI: 10.1016/j.msec.2019.110599
Google Scholar
[8]
A.M.F. Alhalawani, M.R. Towler, A novel tantalum-containing bioglass. Part I. Structure and solubility, Materials Science and Engineering: C, 72 (2017) 202-211.
DOI: 10.1016/j.msec.2016.11.066
Google Scholar
[9]
M. Siodmiak, G. Frenking, A. Korkin, Initial Reactions in Chemical Vapor Deposition of Ta2O5 from TaCl5 and H2O. An Ab Initio Study, J. Phys. Chem. A, 104 (2000) 1186-1195.
DOI: 10.1016/s1369-8001(00)00010-x
Google Scholar
[10]
M.J. Ungerer, C.G.C.E. van Sittert, D.J. van der Westhuizen, H.M. Krieg, Molecular modelling of tantalum penta-halides during hydrolysis and oxidation reactions, Comput. Theor. Chem., 1090 (2016) 112-119.
DOI: 10.1016/j.comptc.2016.06.011
Google Scholar
[11]
L.M. Marcondes, S. Maestri, B.P. de Sousa, C.R. da Cunha, R.O. Evangelista, D. Manzani, F.C. Cassanjes, G.Y. Poirier, Transparent glass and glass-ceramic in the binary system NaPO3-Ta2O5, J. Am. Ceram. Soc., 103 (2020) 1647-1655.
DOI: 10.1111/jace.16885
Google Scholar
[12]
H. Segawa, N. Akagi, T. Yano, S. Shibata, Properties and structures of TiO2-ZnO-P2O5 glasses, J. Ceram. Soc. Jpn., 118 (2010) 278-282.
DOI: 10.2109/jcersj2.118.278
Google Scholar
[13]
Y. Li, W. Weng, J.D. Santos, A.M. Lopes, Structural studies of Na2O–TiO2–CaO–P2O5 system glasses investigated by FTIR and FT-Raman, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B, 49 (2008) 41-45.
Google Scholar
[14]
S.M. Hsu, J.J. Wu, S.W. Yung, T.S. Chin, T. Zhang, Y.M. Lee, C.M. Chu, J.Y. Ding, Evaluation of chemical durability, thermal properties and structure characteristics of Nb–Sr-phosphate glasses by Raman and NMR spectroscopy, J. Non-Cryst. Solids, 358 (2012) 14-19.
DOI: 10.1016/j.jnoncrysol.2011.08.006
Google Scholar
[15]
T. Tsuchiya, H. Imai, S. Miyoshi, P.-A. Glans, J. Guo, S. Yamaguchi, X-Ray absorption, photoemission spectroscopy, and Raman scattering analysis of amorphous tantalum oxide with a large extent of oxygen nonstoichiometry, PCCP, 13 (2011) 17013-17018.
DOI: 10.1039/c1cp21310e
Google Scholar
[16]
J. Wang, Q. Zheng, X. Shi, D. Li, Y. Yang, C. Li, J. Feng, Microstructural evolution and thermal-physical properties of YTaO4 coating after high-temperature exposure, Surf. Coat. Technol., 456 (2023) 129222.
DOI: 10.1016/j.surfcoat.2022.129222
Google Scholar
[17]
K.P.F. Siqueira, A.P. Carmo, M.J.V. Bell, A. Dias, Optical properties of undoped NdTaO4, ErTaO4 and YbTaO4 ceramics, J. Lumin., 179 (2016) 146-153.
Google Scholar
[18]
J. Feng, S. Shian, B. Xiao, D.R. Clarke, First-principles calculations of the high-temperature phase transformation in yttrium tantalate, Physical Review B, 90 (2014) 094102.
DOI: 10.1103/physrevb.90.094102
Google Scholar
[19]
A. Dietzel, Die Kationenfeldstärken und ihre Beziehungen zu Entglasungsvorgängen, zur Verbindungsbildung und zu den Schmelzpunkten von Silicaten, Z. Elektrochem., 48 (1942) 9-23.
DOI: 10.1002/bbpc.19420480104
Google Scholar
[20]
T. Komatsu, T. Honma, T. Tasheva, V. Dimitrov, Structural role of Nb2O5 in glass-forming ability, electronic polarizability and nanocrystallization in glasses: A review, J. Non-Cryst. Solids, 581 (2022) 121414.
DOI: 10.1016/j.jnoncrysol.2022.121414
Google Scholar
[21]
H. Maeda, S. Lee, T. Miyajima, A. Obata, K. Ueda, T. Narushima, T. Kasuga, Structure and physicochemical properties of CaO-P2O5-Nb2O5-Na2O glasses, J. Non-Cryst. Solids, 432 (2016) 60-64.
DOI: 10.1016/j.jnoncrysol.2015.06.003
Google Scholar
[22]
G.B. Rouse, P.J. Miller, W.M. Risen, Mixed alkali glass spectra and structure, J. Non-Cryst. Solids, 28 (1978) 193-207.
DOI: 10.1016/0022-3093(78)90006-6
Google Scholar