Using Thermomechanical Treatment to Improve the Mechanical Properties of Silicon and Silicon-Based Ceramics

Article Preview

Abstract:

Preliminary mechanical loading at a temperature close to the ductile-brittle transition temperature leads to stress relaxation near cracks in brittle materials due to local plastic deformation at microcrack tips. As a result, such preloading increases the physical and mechanical properties of ceramic materials when tested at room temperature. In the present work, this phenomenon is investigated for silicon and silicon-based ceramics. A thermomechanical treatment (TMT) method of the mentioned materials has been developed to increase their strength and fracture toughness.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1178)

Pages:

103-110

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.B. Hirsh, S.G. Roberts. The brittle-ductile transition in silicon. Phil. Mag.A 64 (1991) 55-80.

DOI: 10.1080/01418619108206126

Google Scholar

[2] L. Pizzagalli, J. Godet. Ultrahigh strength and plasticity mechanisms of Si and SiC nanoparticles revealed by first-principles molecular dynamics. Phys. Rev. Lett. 131 (2023) 236201.

DOI: 10.1103/PhysRevLett.131.236201

Google Scholar

[3] A. Merabet, M. Texier, C. Tromas, S. Brochard, J. Godet. Low-temperature intrinsic plasticity in silicon at small scales. Acta Materialia 161 (2018) 54–60.

DOI: 10.1016/j.actamat.2018.09.025

Google Scholar

[4] R.W. Harrison, W.E. Lee. Processing and properties of ZrC, ZrN and ZrCN ceramics: a review. Advances in Applied Ceramics 115/5 (2016) 294–307.

DOI: 10.1179/1743676115Y.0000000061

Google Scholar

[5] J. Gu, J. Zou, J. Liu, H. Wang, et al. Sintering highly dense ultra-high temperature ceramics with suppressed grain growth. Journal of the European Ceramic Society 40/4 (2019) 1086-109.

DOI: 10.1016/j.jeurceramsoc.2019.11.056

Google Scholar

[6] I.V. Gridneva, Yu.V. Milman, V.I. Trefilov. Phase transition in diamond structure crystals at hardness measurement. Phys. Status solidi A 14 (1972) 177-182.

DOI: 10.1002/pssa.2210140121

Google Scholar

[7] M. Brede, K.J. Hisia, A.S. Argon. Brittle crack propagation in silicon single crystals. J. Appl. Phys. 70/ 2 (1991) 758-771.

DOI: 10.1063/1.349632

Google Scholar

[8] K. Maeda. S. Fujita. Ductile-to-brittle transition caused by dynamical work hardening at a crack tip. Scripta Metallurgica 23/3 (1989) 383-388.

DOI: 10.1016/0036-9748(89)90387-6

Google Scholar

[9] G.J.K. Schaffar, D. Tscharnuter, V. Maier–Kiener. Exploring the high-temperature deformation behavior of monocrystalline silicon – An advanced nanoindentation study. Materials & Design 233 (2023) 112198.

DOI: 10.1016/j.matdes.2023.112198

Google Scholar

[10] Information on https://en.wikipedia.org/wiki/Activation_energy.

Google Scholar

[11] M. Brede, P. Haasen. The brittle-to-ductile transition in doped silicon as a model substance. Acta Metall. 36/8 (1988) 2003-2018.

DOI: 10.1016/0001-6160(88)90302-1

Google Scholar

[12] C.S. Pande, R. Goswami. Dislocation emission and crack–dislocation interactions. Metals 10/4 (2020) 473.

DOI: 10.3390/met10040473

Google Scholar

[13] V.I. Trefilov, Yu.V.Milman, O.N. Grigoriev. Deformation and rupture of crystals with covalent interatomic bonds. Prog. Crystal Growth Charact. 16 (1988) 225-277.

DOI: 10.1016/0146-3535(88)90019-6

Google Scholar

[14] Yu.V.Milman. Characteristic temperature of deformation of materials and cold brittlenes of BCC metals and ceramics, in: In: Cocks, A.C.F., Ponter, A.R.S. (Eds), Mechanics of Creep Brittle Materials 2. Springer, Dordrecht, 1991, pp.124-133.

DOI: 10.1007/978-94-011-3688-4_11

Google Scholar

[15] X. Feng, J. Xiao, B. Wen, J. Zhao, B. Xu, Y. Wang, Y. Tian. Temperature-dependent hardness of zinc-blende structured covalent materials. Science China Materials 64/12 (2021) 2280–2288.

DOI: 10.1007/s40843-020-1620-4

Google Scholar

[16] C. Shen, J. Li, T. Niu, J. Cho, Z. Shang, Y. Zhang, A. Shang, B. Yang, K. Xu, R.E. García, H. Wang, X. Zhang. Achieving room temperature plasticity in brittle ceramics through elevated temperature preloading. Science Advances 10(16) 2024.

DOI: 10.1126/sciadv.adj4079

Google Scholar

[17] P. Pirouz, A.V. Samant, M.N. Hong, A. Moulin, L.P. Kubin. On temperature dependence of deformation mechanism and the brittle–ductile transition in semiconductors. Journal of Materials Research 14 (1999) 2783–2793.

DOI: 10.1557/JMR.1999.0372

Google Scholar

[18] M. Elhebeary, T. Harzer, G. Dehm, M.T. A. Saif. Time-dependent plasticity in silicon microbeams mediated by dislocation nucleation. Proc. Natl. Acad. Sci. USA, 117 (29), (2020). 16864–16871.

DOI: 10.1073/pnas.2002681117

Google Scholar

[19] ISO 24370:2005(en). Fine ceramics (advanced ceramics, advanced technical ceramics) - Test method for fracture toughness of monolithic ceramics at room temperature by chevron-notched beam (CNB) method. Publication date 2005-06, 15 p.

DOI: 10.3403/30461601u

Google Scholar

[20] I.N. Frantsevich, F.F. Voronov, S.A. Bacuta. Elastic Constants and Modulus of Metals and Non-Metals, Naukova Dumka, Kiev, 1982. 286 p.

Google Scholar