[1]
P.B. Hirsh, S.G. Roberts. The brittle-ductile transition in silicon. Phil. Mag.A 64 (1991) 55-80.
DOI: 10.1080/01418619108206126
Google Scholar
[2]
L. Pizzagalli, J. Godet. Ultrahigh strength and plasticity mechanisms of Si and SiC nanoparticles revealed by first-principles molecular dynamics. Phys. Rev. Lett. 131 (2023) 236201.
DOI: 10.1103/PhysRevLett.131.236201
Google Scholar
[3]
A. Merabet, M. Texier, C. Tromas, S. Brochard, J. Godet. Low-temperature intrinsic plasticity in silicon at small scales. Acta Materialia 161 (2018) 54–60.
DOI: 10.1016/j.actamat.2018.09.025
Google Scholar
[4]
R.W. Harrison, W.E. Lee. Processing and properties of ZrC, ZrN and ZrCN ceramics: a review. Advances in Applied Ceramics 115/5 (2016) 294–307.
DOI: 10.1179/1743676115Y.0000000061
Google Scholar
[5]
J. Gu, J. Zou, J. Liu, H. Wang, et al. Sintering highly dense ultra-high temperature ceramics with suppressed grain growth. Journal of the European Ceramic Society 40/4 (2019) 1086-109.
DOI: 10.1016/j.jeurceramsoc.2019.11.056
Google Scholar
[6]
I.V. Gridneva, Yu.V. Milman, V.I. Trefilov. Phase transition in diamond structure crystals at hardness measurement. Phys. Status solidi A 14 (1972) 177-182.
DOI: 10.1002/pssa.2210140121
Google Scholar
[7]
M. Brede, K.J. Hisia, A.S. Argon. Brittle crack propagation in silicon single crystals. J. Appl. Phys. 70/ 2 (1991) 758-771.
DOI: 10.1063/1.349632
Google Scholar
[8]
K. Maeda. S. Fujita. Ductile-to-brittle transition caused by dynamical work hardening at a crack tip. Scripta Metallurgica 23/3 (1989) 383-388.
DOI: 10.1016/0036-9748(89)90387-6
Google Scholar
[9]
G.J.K. Schaffar, D. Tscharnuter, V. Maier–Kiener. Exploring the high-temperature deformation behavior of monocrystalline silicon – An advanced nanoindentation study. Materials & Design 233 (2023) 112198.
DOI: 10.1016/j.matdes.2023.112198
Google Scholar
[10]
Information on https://en.wikipedia.org/wiki/Activation_energy.
Google Scholar
[11]
M. Brede, P. Haasen. The brittle-to-ductile transition in doped silicon as a model substance. Acta Metall. 36/8 (1988) 2003-2018.
DOI: 10.1016/0001-6160(88)90302-1
Google Scholar
[12]
C.S. Pande, R. Goswami. Dislocation emission and crack–dislocation interactions. Metals 10/4 (2020) 473.
DOI: 10.3390/met10040473
Google Scholar
[13]
V.I. Trefilov, Yu.V.Milman, O.N. Grigoriev. Deformation and rupture of crystals with covalent interatomic bonds. Prog. Crystal Growth Charact. 16 (1988) 225-277.
DOI: 10.1016/0146-3535(88)90019-6
Google Scholar
[14]
Yu.V.Milman. Characteristic temperature of deformation of materials and cold brittlenes of BCC metals and ceramics, in: In: Cocks, A.C.F., Ponter, A.R.S. (Eds), Mechanics of Creep Brittle Materials 2. Springer, Dordrecht, 1991, pp.124-133.
DOI: 10.1007/978-94-011-3688-4_11
Google Scholar
[15]
X. Feng, J. Xiao, B. Wen, J. Zhao, B. Xu, Y. Wang, Y. Tian. Temperature-dependent hardness of zinc-blende structured covalent materials. Science China Materials 64/12 (2021) 2280–2288.
DOI: 10.1007/s40843-020-1620-4
Google Scholar
[16]
C. Shen, J. Li, T. Niu, J. Cho, Z. Shang, Y. Zhang, A. Shang, B. Yang, K. Xu, R.E. García, H. Wang, X. Zhang. Achieving room temperature plasticity in brittle ceramics through elevated temperature preloading. Science Advances 10(16) 2024.
DOI: 10.1126/sciadv.adj4079
Google Scholar
[17]
P. Pirouz, A.V. Samant, M.N. Hong, A. Moulin, L.P. Kubin. On temperature dependence of deformation mechanism and the brittle–ductile transition in semiconductors. Journal of Materials Research 14 (1999) 2783–2793.
DOI: 10.1557/JMR.1999.0372
Google Scholar
[18]
M. Elhebeary, T. Harzer, G. Dehm, M.T. A. Saif. Time-dependent plasticity in silicon microbeams mediated by dislocation nucleation. Proc. Natl. Acad. Sci. USA, 117 (29), (2020). 16864–16871.
DOI: 10.1073/pnas.2002681117
Google Scholar
[19]
ISO 24370:2005(en). Fine ceramics (advanced ceramics, advanced technical ceramics) - Test method for fracture toughness of monolithic ceramics at room temperature by chevron-notched beam (CNB) method. Publication date 2005-06, 15 p.
DOI: 10.3403/30461601u
Google Scholar
[20]
I.N. Frantsevich, F.F. Voronov, S.A. Bacuta. Elastic Constants and Modulus of Metals and Non-Metals, Naukova Dumka, Kiev, 1982. 286 p.
Google Scholar