Tungsten Scraps and Graphite Foil Waste as Precursors for Manufacturing W–C–Co Materials: Carbidization of Tungsten Compounds in Presence of Graphene Oxides

Article Preview

Abstract:

Abstract. W–C–Co materials were obtained from tungsten scraps and graphite foil waste (GFWs). We converted metallic tungsten-containing scrap (spirals, plates, wires, rods, powders, etc.) into poly(peroxytungstic acid) (PPTA) using a relatively inexpensive processing technology. Graphene oxide (GO) and reduced graphene oxide (rGO) were synthesized from GFWs: GO(graflex) and rGO(graflex). The interaction of these products led to GO(graflex)–PPTA and GO(graflex)–PPTA–Co(CH3COO)2 complexes, which were converted into rGO(graflex)–WOx and rGO(graflex)–WOx–CoO composites through vacuum-thermal treatment. At 900–1100°C in a hydrogen atmosphere, the phases WC, W₂C, and Co₃W₃C₃ were formed. Under identical conditions, the sucrose-containing PPTA–sucrose–cobalt acetate composite yielded only the WC–Co powder composite.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1178)

Pages:

93-102

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Tsagareishvili, L. Chkhartishvili, M. Matcharashvili, Sh. Dekanosidze, Boron and tungsten carbides based and related nanodispersed composites – A review, Charact. Appl. Nanomater. 7 (2) (2024) 5454 (1-22).

DOI: 10.24294/can.v7i2.5454

Google Scholar

[2] L. Chkhartishvili, N. Barbakadze, O. Tsagareishvili, A. Mikeladze, T. Batsikadze, M. Buzariashvili, T. Dgebuadze, R. Chedia, Advanced tungsten-containing materials manufacturing from its scrap, Charact. Appl. Nanomater. 8 (1) (2025) 9274 (1-19).

DOI: 10.24294/can9274

Google Scholar

[3] E. Lassner, W.-D. Schubert, Tungsten, Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Springer, New York, 1999.

DOI: 10.1007/978-1-4615-4907-9_1

Google Scholar

[4] W.-D. Schubert, B. Zeiler, Recycling of Tungsten, The Technology – History, State of the Art and Peculiarities, Int. Tungsten Ind. Assoc. News (2019) https://www.itia.info/wp-content/uploads/2023/07/ITIA_Newsletter_2019_08.pdf (1-24).

Google Scholar

[5] MTS, Tungsten and Costs (2024) https://www.tungsten.com/asset/61bbda640726d (1-2).

Google Scholar

[6] K.B. Shedd, Tungsten Recycling in the United States in 2000, USGS, Reston, 2005.

Google Scholar

[7] P.C. Murau, Dissolution of tungsten by hydrogen peroxide, Anal. Chem. 33 (8) (1961) 1125-1126.

DOI: 10.1021/ac60176a021

Google Scholar

[8] W.-J. Zhang, J.-T. Li, Zh.-W. Zhao, F. Li, Separation of W and Mo from their peroxoacids solutions by thermal decomposition, Trans. Nonferrous Met. Soc. China. 26 (10) (2016) 2731-2737.

DOI: 10.1016/s1003-6326(16)64402-3

Google Scholar

[9] T. Kudo, H. Okamoto, K. Matsumoto, Y. Sasaki, Peroxopolytungstic acids synthesized by direct reaction of tungsten or tungsten carbide with hydrogen peroxide, Inorg. Chim. Acta 111 (2) (1986) L27-L28.

DOI: 10.1016/s0020-1693(00)84626-5

Google Scholar

[10] H. Kim, J. Lee, I. Sohn, J. Hwang, Y. Lee, Preparation of tungsten metal film by spin coating method, Korea–Australia Rheol. J. 14 (2) (2002) 71-76.

Google Scholar

[11] I. Tsuyumoto, Facile synthesis of nanocrystalline hexagonal tungsten trioxide from metallic tungsten powder and hydrogen peroxide, J. American Ceram. Soc. 101 (2) (2017) 509-514.

DOI: 10.1111/jace.15250

Google Scholar

[12] Ch. Fu, C. Foo, P.S. Lee, One-step facile electrochemical preparation of WO3/graphene nanocomposites with improved electrochromic properties, Electrochim. Acta 117 (2014) 139-144.

DOI: 10.1016/j.electacta.2013.11.123

Google Scholar

[13] X. Chang, Sh. Sun, L. Dong, X. Hu, Y. Yansheng, Tungsten oxide nanowires grown on graphene oxide sheets as high-performance electrochromic material, Electrochim. Acta, 129 (2014) 40-46.

DOI: 10.1016/j.electacta.2014.02.065

Google Scholar

[14] X. Chang, L. Dong, Y. Yin, Sh. Sun, A novel composite photocatalyst based on in situ growth of ultrathin tungsten oxide nanowires on grapheme oxide sheets, RSC Adv. 3 (35) (2013) 15005 (1-9).

DOI: 10.1039/c3ra41109e

Google Scholar

[15] X. An, J.C. Yu, Y. Wang, Y. Hu,  X. Yu,, G. Zhang, WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing, J. Mater. Chem. 22 (17) (2012) 8525 (1-7).

DOI: 10.1039/c2jm16709c

Google Scholar

[16] T. Dundua, Preparation of graphene oxide composites containing nanometals and oxides from graphite foil wastes and study of their biocidal activity, Nano Studies 21/22 (2021–2022), 101-120.

DOI: 10.52340/ns.2022.06

Google Scholar

[17] N.G. Barbakadze, V.G. Tsitsishvili, T.V. Korkia, Z.G. Amiridze, N.V. Jalabadze, R.V. Chedia, Synthesis of graphene oxide and reduced graphene oxide from industrial graphite foil wastes, European Chem. Bull. 7 (11) (2018) 329-333.

DOI: 10.17628/ecb.2018.7.329-333

Google Scholar

[18] L. Chkhartishvili, A. Mikeladze, O. Tsagareishvili, N. Barbakadze, K. Sarajishvili, V. Gabunia, T. Korkia, R. Chedia, Effect of cobalt additive on phases formation in boron carbide matrix composites B4C–(Ti, Zr)B2–W2B5, Solid State Sci. 145 (2023) 107339 (1-11).

DOI: 10.1016/j.solidstatesciences.2023.107339

Google Scholar

[19] A. Gachechiladze, A. Kandelaki, O. Mikadze, A. Mikeladze, L. Rukhadze, N. Jalabadze, R. Chedia, Method for reception of nanocrystalline solid materials on the basis of tungsten carbide, Georgian Patent # P 2011 5141 B, 2011 January 10.

Google Scholar

[20] L. Chkhartishvili, A. Mikeladze, R. Chedia, O. Tsagareishvili, N. Barbakadze, K. Sarajishvili, M. Darchiashvili, V. Ugrekhelidze, T. Korkia, Synthesizing fine-grained powders of complex compositions B4C–TiB2–WC–Co, Solid State Sci. 108 (2020) 106439 (1-8).

DOI: 10.1016/j.solidstatesciences.2020.106439

Google Scholar

[21] L. Chkhartishvili, A. Mikeladze, N. Jalabadze, L. Nadaraia, T. Korkia, R. Chedia, New low temperature method of synthesis of boron carbide matrix ceramics ultra-dispersive powders and their spark plasma sintering, Solid State Phenomena 331 (2022) 173-184.

DOI: 10.4028/p-8n6hzy

Google Scholar

[22] L. Chkhartishvili, A. Mikeladze, R. Chedia, O. Tsagareishvili, M. Bugdayci, I. Karagoz, T. Maras, N. Jalabadze, V. Kvatchadze, Combustion synthesis of boron carbide matrix for superhard nanocomposites production, in: M. Bugdayci, L. Oncel (Eds.), Advances in Combustion Synthesis and Technology, Bentham Sci. Publ., Singapore, 2022, Ch. 4, pp.66-95.

DOI: 10.2174/9789815050448122010007

Google Scholar

[23] O. Tsagareishvili, A. Mikeladze, R. Chedia, T. Batsikadze, L. Chkhartishvili, Obtaining of WC–Co- and WC–TiC–Co-based ultradispersive alloys modified with B4C–TiB2 quasieutetic, Rec. Prog. Mater. 6 (3) (2024) 21 (1-50).

DOI: 10.21926/rpm.2403021

Google Scholar

[24] L. Chkhartishvili, N. Barbakadze, O. Tsagareishvili, A. Mikeladze, O. Lekashvili, K. Kochiashvili, R. Chedia, Neutron shield materials based on boron carbide–tungsten multilayer composites, The Paton Welding J. (9) (2024) 20-28.

DOI: 10.37434/tpwj2024.09.03

Google Scholar