[1]
P. Xiao, H. Liu, A.W. Stuedlein, T.M. Evans, Y. Xiao, Effect of relative density and biocementation on cyclic response of calcareous sand, Canadian Geotechnical Journal. 56 (12) (2019) 1849–1862
DOI: 10.1139/cgj-2018-0573
Google Scholar
[2]
J. Chu, V.Ivanov, J. He, M. Naemi, B. Li, V. Stabnikov, Development of microbial geotechnology in Singapore, Geofrontiers. (2011) 4070–4078
DOI: 10.1061/41165(397)416
Google Scholar
[3]
J.T. DeJong, M.B. Fritzges, K. Nusslein, Microbially induced cementation to control sand response to undrained shear, J. Geotech. Geoenviron. 132 (11) (2006) 1381−1392
DOI: 10.1061/(ASCE)1090-0241(2006)132:11(1381)
Google Scholar
[4]
F. Chen, C. Deng, W. Song, D. Zhang, F.A. Al-Misned, M.G. Mortuza, G.M. Gadd, X. Pan, Biostabilization of desert sands using bacterially induced calcite precipitation, Geomicrobiology Journal. 33 (3-4) (2016) 243–249
DOI: 10.1080/01490451.2015.1053584
Google Scholar
[5]
F. Pacheco-torgal, V. Ivanov, N. Karak, H. Jonkers, Biopolymers and biotech admixtures for eco-efficient construction materials, Woodhead Publishing. (2016)
DOI: 10.1016/B978-0-08-100214-8.01001-0
Google Scholar
[6]
L. Cheng, M.A. Shahin, R. Cord-Ruwisch, M. Addis, T. Haranto, C. Elms, Soil stabilisation by microbial induced calcium carbonate precipitation: investigation of some important physical and environmental aspects, Proceedings of the 7th International Congress on Environmental Geotechnics, 10 - 14 November, Melbourne, Australia.
Google Scholar
[7]
R. Siddique, N. Chahal, Effect of ureolytic bacteria on concrete properties, Constr. Build. Mater. 25 (10) (2011) 3791–3801
DOI: 10.1016/j.conbuildmat.2011.04.010
Google Scholar
[8]
S. Khosthtinat, Advancements in exploiting Sporosarcina pasteurii as sustainable construction material: a review, Sustainability. 15 (18) (2023) 13869
DOI: 10.3390/su151813869
Google Scholar
[9]
K.L. Sahrawat, Effects of temperature and moisture on urease activity in semi-arid tropical soils, Plant Soil. 78 (1984) 401–408
DOI: 10.1007/BF02450373
Google Scholar
[10]
L.A. Van Paassen, Biogrout: Ground Improvement by Microbial Induced Carbonate Precipitation, Delft University of Technology, Delft, 2009.
Google Scholar
[11]
F.J. Kadhim, J. Zheng, Review of the factors that influence on the microbial induced calcite precipitation, Civil and Environmental Research. 8 (10) (2016) 69–76.
Google Scholar
[12]
BMKG, Anomali Suhu Udara Rata-Rata Bulan September 2023, Badan Meteorologi, Klimatologi, dan Geofisika, Jakarta, 2024. https://www.bmkg.go.id/iklim/?p=ekstrem-perubahan-iklim
DOI: 10.31172/jmg.v16i1.260
Google Scholar
[13]
NREL, Geothermal Heat Pump Basics, National Renewable Energy Laboratory, Colorado, 2024. https://www.nrel.gov/research/re-geo-heat-pumps.html
DOI: 10.2172/878494
Google Scholar
[14]
M. Li, K. Wen, Y. Li, L. Zhu, Impact of oxygen availability on microbially induced calcite precipitation (MICP) treatment, Geomicrobiol. J. 35 (1) (2017) 15–22
DOI: 10.1080/01490451.2017.1303553
Google Scholar
[15]
G. Le Metayer-Levrel, S. Castanier, G. Orial, J. Loubière, J. Perthuisot, Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony, Sediment. Geol. 126 (1999) 25–34
DOI: 10.1016/S0037-0738(99)00029-9
Google Scholar
[16]
R.A. Sudisman, I.M. Ningrum, S. Sastroredjo, A.A. Cikmit, A.A. Zulfah, S.D.T. Wewengkang, Evaluating bio-cementation injection techniques for silica sand: duration, distribution, and strength enhancement, GEOMATE J. 28 (129) (2025) 55–65. https://geomatejournal.com/geomate/article/view/4855
DOI: 10.21660/2025.129.4855
Google Scholar
[17]
S. Stocks-Fisher, J. Galinat, S. Bang, Microbiological precipitation of CaCO3, Soil Biol. Biochem. 31 (11) (1999) 1563–1571
DOI: 10.1016/S0038-0717(99)00082-6
Google Scholar
[18]
G. Kim, J. Kim, H. Youn, Effect of temperature, pH, and reaction duration on microbially induced calcite precipitation, Appl. Sci. 8 (8) (2018) 1277
DOI: 10.3390/app8081277
Google Scholar