Cu Nanowire Structures Inside Carbon Nanotubes

Article Preview

Abstract:

We have investigated the structures of copper nanowires encapsulated in carbon nanotubes using a structural optimization process applied to a steepest descent method. Results show that the stable morphology of the cylindrical ultra-thin copper nanowires in carbon nanotubes is multi-shell packs consisted of coaxial cylindrical shells. As the diameters of copper nanotubes increases, the encapsulated copper nanowires have the face centered cubic structure as the bulk. The circular rolling of a triangular network can explain the structures of ultra-thin multi-shell copper nanowires encapsulated in carbon nanotubes.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 449-452)

Pages:

1229-1232

Citation:

Online since:

March 2004

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2004 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Ivanov, J.B. Nagy, Ph. Lambin, A. Lucas, X.B. Zhang, X.F. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx and J. Van Landuyt: Chem. Phys. Lett. Vol. 223 (1994), p.329.

DOI: 10.1016/0009-2614(94)00467-6

Google Scholar

[2] X. -R. Ye, Y. Lin, C. Wang and C.M. Wai: Adv. Mater. Vol. 15 (2003), p.316.

Google Scholar

[3] J. Tersoff: Phys. Rev. B Vol. 39 (1989), p.5566.

Google Scholar

[4] T. -H. Fang and C. -I. Weng: Nanotechnology Vol. 11 (2000), p.148.

Google Scholar

[5] F. Cleri and V. Rosato: Phys. Rev. B Vol. 48 (1993), p.22.

Google Scholar

[6] K. Michaclian, N. Rendon and I.L. Garzon: Phys. Rev. B Vol. 60 (1999), p. (2000).

Google Scholar

[7] F.J. Palacios, M.P. Iniguez, M.J. Lopez and J.A. Alonso: Phys. Rev. B Vol. 60 (1999), p.2908.

Google Scholar

[8] L. Rongwu, P. Ahengying and H. Yukun: Phys. Rev. B Vol. 53 (1996) p.4156.

Google Scholar

[9] T.X. Li, S.Y. Yin, Y.L. Ji, B.L. Wang, G.H. Wang and J.J. Zhao: Phys. Lett. A Vol. 267 (2000), p.403.

Google Scholar

[10] H. Lei: J. Phys. Condens. Matter Vol. 13 (2001), p.3023.

Google Scholar

[11] B. Wang, S. Yin, G. Wang and J. Zhao: J. Phys. Condens. Matter Vol. 13 (2001), p. L403.

Google Scholar

[12] J.W. Kang and H.J. Hwang: J. Korean Phys. Soc. Vol. 38 (2001), p.695.

Google Scholar

[13] O. Gulseren, F. Erolessi and E. Tosatti: Phys. Rev. Lett. Vol. 80 (1998), p.3775.

Google Scholar

[14] F. Di Tolla, A. Dal Corse, J.A. Torres and E. Tosatti: Surf. Sci. Vol. 456 (2000), p.947 Journal Title and Volume Number (to be inserted by the publisher).

Google Scholar

[15] H.J. Hwang and J. W Kang: J. Korean Phys. Soc. Vol. 40 (2002), p.283.

Google Scholar

[16] B. Wang, S. Yin, G. Wang, A. Buldum and J. Zhao: Phys. Rev. Lett. Vol. 86 (2001), p. (2046).

Google Scholar

[17] E. Tosatti, S. Prestipino, S. Kostlmeier, A. Dal Corso, and F.D. Di Tolla: Science 291 (2001), p.288.

DOI: 10.1126/science.291.5502.288

Google Scholar

[18] Y. Kondo and K. Takayanagi: Phys. Rev. Lett, Vol. 79 (1997), p.3455.

Google Scholar

[19] Y. Kondo and K. Takayanagi: Science Vol. 289 (2000), p.606.

Google Scholar

[20] Y. Oshima, H. Koizumi, K. Mouri, H. Jirayama and K. Takayanagi: Phys. Rev. B Vol. 65 (2002), p.12101.

Google Scholar

[21] A.I. Yanson, I.K. Yandson and J.M. van Ruitenbeek: Phys. Rev. Lett. Vol. 84 (2000), p.5832.

Google Scholar

[22] B. Wang, S. Yin, G. Wang, A. Buldum and J. Zhao, Phys. Rev. Lett. Vol. 86 (2001).

Google Scholar