Determination of the Recovery Kinetics during the Annealing of Cold Rolled Low Carbon Steels

Abstract:

Article Preview

A cold rolled low carbon steel has been annealed at sufficiently low temperatures (300 to 500 °C) in order to promote recovery without interaction with recrystallization. The recovery kinetics has been followed by using magnetic coercive field (Hc) measurements. The microstructural changes associated with the observed decrease in Hc, produced by the recovery, have been analysed by TEM observations. The experimental data have been adequately modelled using various formulations reported in the literature. The kinetics of the dislocation hardening contribution to the yield stress has been derived from the kinetics of the coercive field, taking into account the existing linear relationship between both variables.

Info:

Periodical:

Materials Science Forum (Volumes 467-470)

Edited by:

B. Bacroix, J.H. Driver, R. Le Gall, Cl. Maurice, R. Penelle, H. Réglé and L. Tabourot

Pages:

141-146

Citation:

A. Martínez-de-Guereñu et al., "Determination of the Recovery Kinetics during the Annealing of Cold Rolled Low Carbon Steels", Materials Science Forum, Vols. 467-470, pp. 141-146, 2004

Online since:

October 2004

Export:

Price:

$38.00

[1] F.J. Humphreys and M. Hatherly, Recovery after deformation, Ch. 5 in: Recrystallization and related annealing phenomena, (Pergamon Press, Oxford, 1996), p.127.

DOI: https://doi.org/10.1016/b978-0-08-041884-1.50012-x

[2] J.T. Michalak and H.W. Paxton, Trans. Met. Soc. of AIME, Vol. 221 (1961), p.850.

[3] R.A.L. Drew, W.B. Muir and W.M. Williams, Metals Technology, Vol. 11 (1984), p.550.

[4] L.N. Chaudhary and A.H. Qureshi, IEEE Trans. on Magnetics, Vol. 7 (1971), p.560.

[5] D.C. Jiles, NDT International, Vol. 10 (1988), p.311.

[6] Baldev Raj, V. Moorthy, T. Jayakumar and K.B.S. Rao, International Materials Reviews, 48 (2003), p.273.

[7] H. Traüble, The influence of crystal defects on magnetization processes in ferromagnetic single crystals in Magnetism and Metallurgy, Vol. 2, Ed. A.E. Berkowitz and E. Kneller, (Academic Press, New York, 1969), p.621.

[8] J. Sternberk, E. Kratochvílová, J. Hrebík and A. Gemperle, Phys. Stat. Sol. (a), Vol. 79 (1983), p.523.

DOI: https://doi.org/10.1002/pssa.2210790225

[9] B. Astié, J. Degauque, J.L. Porteseil, R. Vergne, IEEE Trans. on Magnetics, MAG-17 (1981), p.2929.

DOI: https://doi.org/10.1109/tmag.1981.1061496

[10] D. Kuhlmann, Z. Physik, 124 (1948), p.468.

[11] M. Verdier, Y. Brechet and P. Guyot, Acta Mater., 47(1) (1998), p.127.

[12] A. Martínez de Guerenu, Ph. D. Thesis, Universidad de Navarra, San Sebastián, in progress.

[13] A. Martínez de Guerenu, F. Arizti , M. Díaz-Fuentes and I. Gutiérrez, Recovery during annealing in a cold rolled low carbon steel. Part I: Kinetics and microstructural characterization, Acta Mater. Accepted for publication.

DOI: https://doi.org/10.1016/j.actamat.2004.04.019

[14] Ref.

[2] H. Hu, Annealing of silicon-iron single crystals,: in Recovery and Recrystallization of Metals, Ed. L. Himmel, (Science publishers, New York, 1963), p.311; L.N. Chaudhary and A.H. Qureshi, IEEE Trans. on Magnetics, 7(3) (1971).

[15] J.G. Byrne, Ch 3, Recovery in: Recovery, recrystallization and grain growth, (The Macmillan Co., New York, 1965), p.37.

[16] A. Martínez de Guerenu, F. Arizti and I. Gutiérrez, Recovery during annealing in a cold rolled low carbon steel. Part II: Modelling kinetics, Acta Mater. Accepted for publication.

DOI: https://doi.org/10.1016/j.actamat.2004.04.020

Fetching data from Crossref.
This may take some time to load.