Experimental Investigations of the Al 6082 Alloy Subjected to Equal-Channel Angular Pressing

Article Preview

Abstract:

The interest in bulk nanostructured materials (NSM), processed by methods of severe plastic deformation (SPD), is justified by their unique physical and mechanical properties. Equalchannel angular pressing (ECAP) is one of the methods of severe plastic deformation (SPD) that produces ultra fine-grained material. Due to the cyclic nature of the process, it is difficult to produce specimens with a high length to diameter ratio. Ratios of 6-7 have been reported in the literature to date. Longer specimens, however, are useful since the homogenous part is larger and the relative size of end effects is smaller. A new method was developed to obtain length to diameter ratios as high as 8-10. This new technique was developed using the multi-pass finite element simulation. The as-received alloy used in this study was the 6082 commercial Al-Mg-Si alloy. High strength and high ductility phenomenon that was found recently in materials after SPD were reached with the route C. The induced anisotropy of specimens after ECAP was monitored.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 473-474)

Pages:

129-134

Citation:

Online since:

January 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Progr. Mater. Sci. 2000, 45, pp.103-189.

Google Scholar

[2] P.B. Berbon, N.K. Tsenev, R.Z. Valiev, M. Furukawa, Z Horita, M. Nemoto, T.G. Langdon, Metall. Mater. Trans. 1998, 29A, pp.2237-2243.

DOI: 10.1007/s11661-998-0101-6

Google Scholar

[3] Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, Metall. Mater. Trans. 1998, 29A, pp.2053-2510.

Google Scholar

[4] Z. Horita, D. Smith, M. Nemoto, R.Z. Valiev, T.G. Langdon, Mater. Research Soc. 1998, 13, pp.446-450.

Google Scholar

[5] P.B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, N. K Tsenev, R.Z. Valiev, T.G. Langdon, Mater. Sci. 1996, 217-222, pp.1013-1018.

DOI: 10.4028/www.scientific.net/msf.217-222.1013

Google Scholar

[6] J.Y. Suh, H.S. Kim, J.W. Park, J.Y. Chang, Scripta Mater. 44 (2001) pp.677-681.

Google Scholar

[7] H.S. Kim, Mater. Sci. Eng., A315 (2001) pp.122-128.

Google Scholar

[8] S.L. Semiatin, D.P. Delo, E.B. Shell, Acta Mater. 48 (2000) pp.1841-1851.

Google Scholar

[9] D.P. Delo, S.L. Semiatin, Metallurgical and Material transaction A, 30A, (1999), pp.1391-1402.

Google Scholar

[10] H.S. Kim, M.H. Seo, S.H. Hong, Mater. Sci. Eng., A291 (2000) pp.86-90.

Google Scholar

[11] H.S. Kim, S.H. Hong, M.H. Seo ,J. Mater. Res., Vol. 16 Nr. 3 (2001) pp.856-864.

Google Scholar

[12] H.S. Kim, M.H. Seo, S.H. Hong, J. Mat. Proc. Techn., 130-131, (2002) pp.497-503.

Google Scholar

[13] S.J. Oh, S.B. Kang, Mater. Sci. Eng., A343 (2003), pp.107-115.

Google Scholar

[14] J.R. Bowlen, A. Gholinia, S.M. Roberts, P.B. Prangnell, Mater. Sci. Eng., A287 (2000), pp.87-99.

Google Scholar

[15] L. Zuyan, W. Zhongjin, J. Mat. Proc. Techn, 94 (1999) pp.193-196.

Google Scholar

[16] Z.Y. Liu, Z. Wang, E. Wang, Mater. Sci. Eng., A262 (1999), pp.137-140.

Google Scholar

[17] H.S. Kim, Mater. Sci. Eng, A328 (2002) pp.317-323.

Google Scholar

[18] Gy. Krallics, Z. Szeles, D. Malgyn Materials Science Forum Vols. 414-415 (2003). pp.439-444.

Google Scholar

[19] MSC. SuperForm Command Reference, Version 2002 (2001) MSC Software Corporation.

Google Scholar

[20] R. Valiev, Adv. Eng. Mat., 5 (2003) No. 5, pp.296-300.

Google Scholar

[21] R. Valiev, I.V. Alexandrov, Y.T. Zhu, T.C. Lowe, J. Mat. Res., Vol. 17, No. 1 (2002) pp.5-8.

Google Scholar

[22] Y. Wang, M. Chen, F. Zhou, E. Ma, Nature Vol 419 (2002) pp.912-914.

Google Scholar

[23] G. Krallics, D. Malgin, G.I. Raab, I.V. Alexandrov, Ultrafine Grained Materials III conference (2004).

Google Scholar