Electrical and Physical Properties of Al and Nb Doped PbTiO3 Ceramic Thin Films

Article Preview

Abstract:

A series of Pb(Ti1-xAlx)O3, Pb(Ti1-xNbx)O3 and Pb(Ti1-xAlx/2Nbx/2)O3 thin films were fabricated onto Pt/Ti/SiO2/Si(100) substrates using a chemical solution deposition process. The dielectric constant of the Pb(Ti1-xAlx)O3 thin films increased with increase of aluminum content, while a maximum dielectric constant value was observed for the Pb(Ti1-xNbx)O3 and Pb(Ti1 xAlx/2Nbx/2)O3 thin films when the doping contents were 10 and 20 mol%, respectively. The dielectric constant of the Pb(Ti0.8Al0.1Nb0.1)O3 thin film is about 600, being two times higher than those of Pb(Ti0.9Al0.1)O3 and Pb(Ti0.9Nb0.1)O3 thin films. The Pb(Ti0.8Al0.1Nb0.1)O3 thin film showed less than 10-7 A/cm2 current density at ±150 kV/cm, being superior to the leakage property of the PbTiO3, Pb(Ti0.9Al0.1)O3 and Pb(Ti0.9Nb0.1)O3 thin films. The co-doping of aluminum and niobium is more effective to increase the dielectric and ferroelectric properties as compared with the individual aluminum or niobium doping.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 475-479)

Pages:

1587-1590

Citation:

Online since:

January 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Li and D. Viehland: J. Appl. Phys. 80 (1996) , p.3451.

Google Scholar

[2] S. L. Swartz, T. R. Shrout, W. A. Schultze and L. E. Cross: J. Am. Ceram. Soc. 67 (1984) , p.311.

Google Scholar

[3] S. Nomura and K. Uchino: Ferroelectrics 41 (1982) , p.117.

Google Scholar

[4] V. A. Bokov and I. E. Myi'nikova: Solid State 2(1961)2428.

Google Scholar

[5] Randall, A. S. Bhalla, T. R. Shrout and L. E. Cross: J. Mater. Res. 5 (1990) , p.829.

Google Scholar

[6] J. H. Moon, H. M. Jang and B. D. You: J. Mater. Res. 8 (1993) , p.3184.

Google Scholar

[7] T. Yamamoto and S. Ohash: Jpn. J. Appl. Phys. 34(1995) , p.5449.

Google Scholar

[8] H. Lim, H. J. Kim and W. K. Choo: Jpn. J. Appl. Phys. 34(1995) , p.5349.

Google Scholar

[9] B. Jaffe, W. R. Cook, Jr. and H. Jaffe: Piezoelectric Ceramics(Academic Press, New York, 1971)Chap. 7, p.146.

Google Scholar

[10] Bo-Ping ZHANG, Takashi LIJIMA, and Yohachi YAMASHITA: Jpn. J. Appl. Phys. Vol. 41(2002) , pp.202-207.

Google Scholar

[11] Bo-Ping ZHANG, Takashi LIJIMA, and Yohachi YAMASHITA: Jpn. J. Appl. Phys. Vol. 40(2001) , p. L511-L514.

Google Scholar

[12] Bo-Ping ZHANG, Takashi LIJIMA: Journal of the ceramic Society of Japan. 109.

Google Scholar

[4] (2001), p.299.

Google Scholar