Enhancement of Plasticity in Ti-Based Bulk Metallic Glass

Article Preview

Abstract:

The effects of structural relaxation and partial crystallization on the mechanical property of the Ti40Zr29Cu9Ni8Be14 bulk metallic glass (BMG) have been investigated. The atomic structure of the as-cast Ti40Zr29Cu9Ni8Be14 metallic glass transforms into a more relaxed state at the temperature region of 452 –585 K, below the crystallization onset temperature of 631 K. Stable icosahedral phase forms in the amorphous matrix by growth of the pre-existing nuclei in the amorphous matrix during first crystallization step. The compressive plastic strain of the as-cast Ti40Zr29Cu9Ni8Be14 BMG is 6.7 %, and decreases when the structural relaxation occurs. However, the plastic strain increases when a few nanometer size icosahedral phase particles form in the amorphous matrix by the partial crystallization treatment.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 475-479)

Pages:

3409-3414

Citation:

Online since:

January 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.R. Anantharaman : Metallic glasses; Production, Proterites and Applications (Trans tech publications, Switzerland 1984).

Google Scholar

[2] F.E. Luborsky : Amorphous Metallic Alloys (Butterworths Monographs in materials UK, 1983).

Google Scholar

[3] J. Eckert, A. Reger-Leonhard, B. Weiß and M. Heilmaier: Mater. Sci. Eng., A301, (2001), p.1.

Google Scholar

[4] A. Inoue, T. Zhang, M.W. Chen and T. Sakurai: J. Mater. Res., Vol. 15, (2000), p.2195.

Google Scholar

[5] H. Choi-Yim, R. Busch, U. Köster and W.L. Johnson: Acta mater., Vol. 47, (1999), p.2455.

Google Scholar

[6] R.D. Conner, R.B. Dandliker and W.L. Johnson: Acta mater., Vol. 46, (1998), p.6189.

Google Scholar

[7] H. Choi-Yim, W.L. Johnson: Appl. Phys. Lett., Vol. 71, (1997), p.3808.

Google Scholar

[8] C.C. Hays, C.P. Kim, W.L. Johnson: Phys. Rev. Lett., Vol. 84, (2000), p.2901.

Google Scholar

[9] A. Inoue, T. Zhang, J. Saida, and M. Matsushita: Mater. Trans. JIM, Vol. 41, (2000), p.1511.

Google Scholar

[10] A. Inoue, C. Fan, J. Saida and T. Zhang: Sci. Tech. Advanced Materials, Vol. 1, (2000), p.73.

Google Scholar

[11] L.Q. Xing, J. Eckert, and L. Schultz: NanoStructured materials, Vol. 12, (1999), p.503.

Google Scholar

[12] Y.C. Kim, J.M. Park, J.H. Na, J.K. Lee, W.T. Kim, and D.H. Kim: Appl. Phys. Lett., Vol. 83, 15, (2003), p.3093.

Google Scholar

[13] A. Inoue, H. Kimura, and S. Yamaura: Met. Mater. -Int., Vol. 9, No. 6 (2003), p.527.

Google Scholar

[14] H.S. Chen: Rep. Prog. Phys., Vol. 43, (1980), p.353.

Google Scholar