Photoelectrochemical Measurements on Cathodically Electrodeposited Films of Cadmium and Zinc Chalcogenide Compounds

Article Preview

Abstract:

A variety of electrochemical and electrical techniques is employed in order to determine useful parameters of the optical behaviour of thin semiconducting films. In particular, this work is intended to the characterization of cathodically electrodeposited binary and ternary cadmium and zinc selenides and tellurides by photoelectrochemical (PEC) tests. Typical solid-state techniques, such as reflection, laser assisted photoreflection, resistivity and Hall effect measurements are used as well. A plain relation between crystal structure/film morphology and PEC behavior is established so long as the electrochemical preparation method is capable to explicitly control the deposit structure. In certain cases, a particular charge transfer mechanism in the semiconductor, associated with the existence of a nanostructure, is shown to result in higher photoconversion efficiencies as compared to larger-grained films.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 480-481)

Pages:

1-12

Citation:

Online since:

March 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. Savadogo: Sol. Ener. Mater. & Sol. Cells Vol. 52 (1998), p.361.

Google Scholar

[2] C.D. Lokhande, P.S. Patil, H. Tributsch and A. Ennaoui: Sol. Ener. Mater. & Sol. Cells Vol. 55 (1998), p.379.

Google Scholar

[3] R.D. Rauh: Cadmium Chalcogenides (CdS, CdSe, CdTe) in Semiconductor Electrodes, Ed. by H.O. Finklea (Elsevier, Amsterdam 1988) vol. 55, ch. 6, p.277.

Google Scholar

[4] M. Bouroushian, Z. Loizos, N. Spyrellis and G. Maurin: Thin Solid Films Vol. 229 (1993), p.101.

Google Scholar

[5] G. Hodes: Electrodeposition of II-VI Semiconductors in Physical Electrochemistry - Principles, Methods and Applications, Ed. by I. Rubinstein (Marcel Deccer, Inc. 1995) ch. 11, p.515.

Google Scholar

[6] M. Bouroushian, J. Charoud-Got, Z. Loizos, N. Spyrellis and G. Maurin: Thin Solid Films Vol. 381 (2001), p.39.

DOI: 10.1016/s0040-6090(00)01687-4

Google Scholar

[7] M. Bouroushian, T. Kosanovic, Z. Loizos and N. Spyrellis: J. Solid State Electrochem. Vol. 6 (2002), p.272.

DOI: 10.1007/s100080100215

Google Scholar

[8] M. Bouroushian, Z. Loizos and N. Spyrellis: Appl. Surf. Sci. Vol. 156 (2000), p.125.

Google Scholar

[9] O.H. Finklea: Semiconductor Electrode Concepts and Terminology in Semiconductor Electrodes, Ed. by H.O. Finklea (Elsevier, Amsterdam 1988) Vol. 55, ch. 1, p.18, 27.

Google Scholar

[10] M.A. Butler: J. App. Phys. Vol. 48/5 (1977), p. (1914).

Google Scholar

[11] D.C. Ginley and M.A. Butler: J. App. Phys. Vol. 48/5 (1977), p. (2019).

Google Scholar

[12] S.R. Morrison: Electrochemistry at Semiconductor and oxidized Metal Electrodes (Plenum Press, New York SRI Int. 1980) ch. 2, p.77, ch. 5, p.185.

Google Scholar

[13] M. Takahashi, K. Uosaki, H. Kita and S. Yamaguchi: J. Appl. Phys. Vol 60/6 (1986), p. (2046).

Google Scholar

[14] A.J. Windheim, H. Wynands and M. Cosivera: J. Electrochem. Soc. Vol. 138/11 (1991), p.3435.

Google Scholar

[15] Handbook of Chemistry and Physics, Ed. by D. R. Lide (CRC Press, 71st Ed. 1990-91).

Google Scholar

[16] K. Rajeshwar, L. Thompson, P. Singh, R.C. Kainthla and K.L. Chopra: J. Electrochem. Soc. Vol. 128/8 (1981), p.1744.

Google Scholar

[17] M. Smiley, R.N. Biagioni and A.B. Ellis: J. Electrochem. Soc. Vol. 131/5 (1984), p.1068.

Google Scholar

[18] G. Hodes, I.D.J. Howell and L.M. Peter: J. Electrochem. Soc. Vol. 139/11 (1992), p.3136.

Google Scholar