Estimation of Selenium Consumption during Selenization of Cu-In Metallic Layer in a Quazi-Closed System

Article Preview

Abstract:

Selenium vapour distribution and consumption during selenization process of Cu-In metallic layers provided in a quasi-closed system with inert gas environment at atmospheric pressure were studied. A model taking into account the four most important mechanisms of Se consumption, namely the creation and maintenance of Se vapour over-pressure, the out-diffusion through open boundaries of quasi-closed system, the drift transport by constant nitrogen flux and chemical reactions with Cu-In metallic layers, is developed to estimate the total amount of selenium required for selenization process. The diffusion mechanism was found to be dominating the selenium consumption for the used reactor design. Calculated values find a good agreement with experimental results from weighing of the Se source material before and after selenization.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 480-481)

Pages:

243-250

Citation:

Online since:

March 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Hedestrom, H. Olsen, M. Bodegårt, A. Kylner, L. Stolt, D. Harisros, M. Rückh and H.W. Schock: Proc. of 23-rd IEEE PV specialist conf., Louswill, 1993, p.364.

Google Scholar

[2] J. Kessler, H. Dittrich, F. Grunwald and H.W. Schock: Proc. of 10-th EU PV solar energy conf., Lisbon, 1991, p.879.

Google Scholar

123 0. 000.

Google Scholar

127 2 370 430 50 15 0. 015.

Google Scholar

040 13. 227.

Google Scholar

[41] 491 0. 310.

Google Scholar

850 13. 552.

Google Scholar

[42] 381 Min 0. 015 13. 234 0. 310 13. 559 Regime 1 Max 0. 040 41. 614 0. 854 42. 508 1 220 280 10 15 0 0.

Google Scholar

063 2 390 450 50 15 0. 021.

Google Scholar

065 20. 147.

Google Scholar

[70] 128 0. 451.

Google Scholar

[1] 377 20. 619.

Google Scholar

[71] 570 Min 0. 021 20. 150 0. 451 20. 622 Regime 2 Max 0. 065 70. 189 1. 379 71. 633 1 260 320 20 10 0 0.

Google Scholar

762 0. 002.

Google Scholar

775 2 370 430 30 10 0. 003.

Google Scholar

008 7. 936.

Google Scholar

[24] 894 0. 124.

Google Scholar

340 8. 063.

Google Scholar

[25] 242 Min 0. 003 8. 032 0. 126 8. 161 Regime 3 Max 0. 008 25. 656 0. 353 26. 017 Table IV. Measured and calculated values for the total consumption of selenium. ∆mSe, mg № ∆mch, mg ∆msum, mg calc. meas. 1 10. 4 13. 6÷42. 5 24. 0÷52. 9 37. 2±6. 2 2 10. 4 20. 6÷71. 6 31. 0÷82. 0 57. 4±23. 2 3 2. 1 8. 2÷26. 0 10. 2÷28. 1 19. 1.

Google Scholar

[3] G. Guillen and J. Herrero: Vacuum Vol. 67 (2002), p.659.

Google Scholar

[4] M. Gasteleyn, M. Burgleman, B. Depuydt and A. Vervaet: Proc. of 13-th EU PV solar energy conf., Nice, 1995, p. (1987).

Google Scholar

[5] S. Chapman and T.G. Cowling. The mathematical theory of non-uniform gases, (At the university press, Cambridge, 1970), 423 p.

Google Scholar

[6] K.E. Grew and T.L. Ibs. Thermal diffusion in gases, (At the university press, Cambridge, 1952), 139 p.

Google Scholar

[7] F. Kurdesau, M. Kaelin, V.B. Zalesski, V.I. Kovalewsky, V.F. Gremenok, E.P. Zaretskaya and A.N. Tiwari: Thin Solid Films Vol. 451-452 (2003), pp.245-249.

DOI: 10.1016/j.tsf.2003.10.134

Google Scholar

[8] Handbook of chemistry and physics, 59-th edition, (edited by R.C. Weast and M.J. Astle) (CRC Press, Boca-Raton, Florida, 1979), D-238.

Google Scholar

[9] Vapour pressure curves of the elements, (prepared by R.E. Honig) (RCA, Princeton, 1962), sheet B.

Google Scholar