Cd1-xMnxS Nanoparticles: Far-Infrared Phonon Spectroscopy

Article Preview

Abstract:

Phonon spectra of Cd1-xMnxS (x = 0; 0.01; 0.05; 0.1; 0.15; 0.3) nanoparticles (d ~ 4.5 nm) have been investigated by far-infrared reflection (FIR) (spectral range 40 - 600 cm-1, temperature range 80 – 300 K) and Raman spectroscopy (100 – 700 cm-1, 300 K). Cd1-xMnxS nanoparticles have been synthesized by using aqueous solution precipitation. We obtained interesting features in FIR spectra: there are expected modes of bulk CdS (240 cm-1, 300 cm-1), new modes connected with nano-size of CdS (130 cm-1, 170 cm-1) and additional mode at 120 cm-1 in Cd1-xMnxS nanoparticles which can be assigned to the presence of Mn. The position of obtained modes is discussed in the frame of the linear chain model with both mass and force constant defects. Raman spectroscopy gives us only the mode at 300 cm-1 and its second harmonic.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 480-481)

Pages:

237-242

Citation:

Online since:

March 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.K. Furdyna and J. Kossut: Semicond. and Semimetals Vol. 25 (Academic Press, New York, 1988).

Google Scholar

[2] R.J. Bandaranayake et al.: J. Magnetism and Magnetic Materials Vol. 169 (1997), p.289.

Google Scholar

[3] N. Feltin et al.: J. Phys. Chem. B Vol. 103(1999), p.4.

Google Scholar

[4] M.I. Čomor, B. Babić-Stojić and J.M. Nedeljković: Materials Science Forum Vol. 413 (2003), p.17.

Google Scholar

[5] R.N. Bhargava: J. Lumin. Vol. 70(1996), p.85.

Google Scholar

[6] R.N. Bhargava et al.: Phys. Rev. Lett. Vol. 72 (1994), p.416.

Google Scholar

[7] Y. Wang et al.: Solid State Commun. Vol. 77 (1991), p.33.

Google Scholar

[8] Y. Oka and K. Yanata: J. Lumin. Vol. 70 (1996), p.35.

Google Scholar

[9] M.A. Chamarro et al.,: J. Crystal Growth Vol. 159 (1996), p.853.

Google Scholar

[10] S. Biernachi et al.: Semicond. Sci. Technol. Vol. 11 (1996), p.48.

Google Scholar

[11] L. Levy et al.: J. Phys. Chem. B Vol. 100 (1996), p.18332.

Google Scholar

[12] L. Levy et al.: J. Phys. Chem. B Vol. 101 (1997), p.9153; Adv. Mater. Vol. 10 (1998), p.53.

Google Scholar

[13] L. E. Brus: J. Chem. Phys. Vol. 80 (1984), p.4403.

Google Scholar

[14] J.S. Suh and J.S. Lee: Chem. Phys. Lett. Vol. 281 (1997), p.384.

Google Scholar

[15] Y. Wang et al.: Solid State Commun. Vol. 77 (1991), p.33.

Google Scholar

[16] M.A. Nusimovici and J. Birman: Phys. Rev. Vol. 156( 3) (1967), p.156.

Google Scholar

[17] M.A. Nusimovici and M. Balkanski: Phys. Rev. B Vol. 1(2) (1970), p.603.

Google Scholar

[18] H.W. Verleur and A.S. Barker: Phys. Rev. Vol. 155(3) (1967), p.155.

Google Scholar

[19] G. Lucovsky et al.: Phys. Rev. Vol. 2(8) (1970), p.3295.

Google Scholar

[20] L. Genzel and W. Bauhofer: Z. Physik B Vol. 25 (1976), p.13.

Google Scholar

[21] A.S. Barker and A.J. Sievers: Rev. of Modern Physics Vol. 47 (1975), Suppl. 2, S1.

Google Scholar

[22] I.F. Chang and S.S. Mitra: Adv. Phys. Vol. 20 (1971), p.359.

Google Scholar

[23] M. C. Klein et al.: Phys. Rev. B Vol. 42(17) (1990), p.11123.

Google Scholar

[24] E. Rocaet al.: Phys. Rev. B Vol. 19 (1994), p.13704.

Google Scholar

[25] T.D. Krauss et al.: Phys. Rev. Lett. Vol. 76(8) (1996), p.1336.

Google Scholar

[26] M.P. Chamberlain et al.: Phys. Rev. Vol. 51(3) (1995), p.1680.

Google Scholar

[27] L.A. Gribov: Theory of infrared spectra of Polymers (Nauka, Moscow, 1977).

Google Scholar