Critical Planes in Multiaxial Fatigue

Article Preview

Abstract:

The paper includes a review of literature on the multiaxial fatigue failure criteria based on the critical plane concept. The criteria were divided into three groups according to the distinguished fatigue damage parameter used in the criterion, i.e. (i) stress, (ii) strain and (iii) strain energy density criteria. Each criterion was described mainly by the applied the critical plane position. The multiaxial fatigue criteria based on two critical planes seem to be the most promising. These two critical planes are determined by different fatigue damage mechanisms (shear and tensile mechanisms).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

109-114

Citation:

Online since:

April 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Stanfield: Proc. Institution of Mechanical Engineers 131, (1935), p.93.

Google Scholar

[2] D.F. Socie, G.B. Marquis: Multiaxial Fatigue, (Society of Automotive Engineers, Inc. Warrendale, Pa., 2000), p.484.

Google Scholar

[3] W.N. Findley: Journal of Engineering for Industry, November (1959), pp.301-306.

Google Scholar

[4] D.L. McDiarmid: Fatigue Fract. Eng. Mater. Struct., Vol. 14, (1990), pp.429-453.

Google Scholar

[5] H. Dietmann, T. Bhongbhibhat, A. Schmid: Mechanical Engineering Publications, Eds. K. Kussmaul, D. McDiarmid, and D. Socie, London, (1991), pp.449-469.

Google Scholar

[6] T. Matake: Bulletin of the JSME, Vol. 20, No 141, (1977), pp.257-26.

Google Scholar

[7] E. Macha: Scientific papers of the Inst. of Mater. Sc. And Appl. Mech., Wroclaw TU, No 41, Monographs, No 13, Wroclaw (1979), p.99 (in polish).

Google Scholar

[8] A. Carpinteri, E. Macha, R. Brighenti, A. Spagnoli: Int. J. Fatigue, Vol. 21, 1999, pp.83-96.

Google Scholar

[9] Macha E.: Mat. -wiss. U. Werkstotech. No. 20, 1989, Teil I, Heft 4/89, pp.132-136, Teil II, Heft 5/89, pp.153-163.

Google Scholar

[10] I.V. Papadopoulos, P. Davoli, C. Gorla, M. Filippini, A. Bernasconi: Int. J. Fatigue, Vol. 19, (1997), pp.219-235.

Google Scholar

[11] M.W. Brown, K.J. Miller: Fatigue Eng. Mater. Struct. Vol. 1, (1979), pp.231-246.

Google Scholar

[12] A. Fatemi, P. Kurath: Trans. ASME J. Eng. Mat. Techn, Vol. 110, (1988), pp.380-388.

Google Scholar

[13] Macha E.: Fortschr. -Ber. VDI Reihe 18, Nr 52, VDI-Verlag, Dusseldorf 1988, ps 102.

Google Scholar

[14] K.N. Smith, P. Watson, T.H. Topper: Journal of Materials, Vol. 5, No. 4, (1970), pp.767-778.

Google Scholar

[15] D.F. Socie: ASME J. Engin. Mat. Techn., Vol. 109, (1987), pp.292-298.

Google Scholar

[16] T. Ogata, A. Nitta, K. Kuwabara: Third Inter. Conf. On Biaxial/Multiaxial Fatigue, MPA Univ. Stuttgart, Vol. 2, (1989), p.56. 1-56. 17.

Google Scholar

[17] K.C. Liu: Advances in Multiaxial Fatigue, ASTM STP 1191, Philadelphia, (1993), pp.67-84.

Google Scholar

[18] G. Glinka, G. Shen, A. Plumtree: Fatigue Fract. Eng. Mater. Struct., Vol. 18, (1995), pp.37-46.

Google Scholar

[19] T. Łagoda, E. Macha, W. Będkowski: Int. J. Fatigue, Vol. 21, (1999), pp.431-443.

Google Scholar

[20] X. Chen, S. Xu, D. Huang: Fatigue Fract. Eng. Mater. Struct., Vol. 22, (1999), pp.679-686.

Google Scholar

[21] J. Hoffmeyer, R. Döring, T. Seeger, M. Vormwald: Elsevier Science, ICF10, (2001), CD, p.8 With the support of the Commission of the European Communities under the FP5, GROWTH Programme, contract No. G1MA-CT2002-04058 (CESTI).

Google Scholar