Theoretical Strength of Metals and Intermetallics from First Principles

Article Preview

Abstract:

The state of the art of ab-initio calculations of the theoretical strength (TS) of materials is summarized and a database of selected theoretical and experimental results presented. Differences between theoretical and experimental TS values are discussed by assessing the stability conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-38

Citation:

Online since:

April 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.C. Wallace, ed.: Thermodynamics of Crystals (John Wiley & Sons, New York-LondonSydney-Toronto 1972).

Google Scholar

[2] J. Wang, J. Li, S. Yip, S.R. Phillpot and D. Wolf: Phys. Rev. B 52 (1995), p.627.

Google Scholar

[3] J.W. Morris and C.R. Krenn: Phil. Mag. A 80 (2000), p.2827.

Google Scholar

[4] S. Yip, J. Li, M. Tang, and J. Wang: Mater. Sci. Eng. A317 (2001), p.236.

Google Scholar

[5] D.M. Clatterbuck, C.R. Krenn, M. L Cohen and J.W. Jr. Morris: Phys. Rev. Lett. 91 (2003), p.135501.

Google Scholar

[6] P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964), p. B864.

Google Scholar

[7] E. Esposito, A.E. Carlson, B.D. Ling, H. Ehrenreich and Jr.C.D. Gelatt: Phil. Mag. A41 (1980), p.251.

Google Scholar

[8] M. Šob, L.G. Wang and V. Vitek: Mat. Sci. Eng. A 234-236 (1997), p.1075.

Google Scholar

[9] M. Šob, L.G. Wang and V. Vitek: Metall. Mater. 36 (1998), p.145.

Google Scholar

[10] H. Kitagawa and S. Ogata: Key Eng. Mater. 161-163 (1999), p.443.

Google Scholar

[11] S. Ogata and H. Kitagawa: Comp. Mat. Sci. 15 (1999), p.435.

Google Scholar

[12] W. Luo, D. Roundy, M.L. Cohen and Jr.J.W. Morris: Phys. Rev. B 66 (2002), p.094110.

Google Scholar

[13] M. Friák, M. Šob and V. Vitek: Phil. Mag. A 83 (2003), p.3529.

Google Scholar

[14] D.M. Clatterbuck, D.C. Chrzan, J.W. Morris, Jr., Acta Mater. 51 (2003) 2271.

Google Scholar

[15] W. Li and T. Wang: J Phys.: Cond. Matter 10 (1998), p.9889.

Google Scholar

[16] M. Černý, M. Šob, J. Pokluda and P. Šandera: J. Phys. Cond. Matter 16 (2004), p.1045.

Google Scholar

[17] A.T. Paxton, P. Gumbsch and M. Methfessel: Phil. Mag. Lett. 63 (1991), p.267.

Google Scholar

[18] W. Xu, J.A. Moriarty, Phys. Rev. B 54 (1996), p.6941.

Google Scholar

[19] P. Söderlind, J.A. Moriarty, Phys. Rev. B 57 (1998), p.10340.

Google Scholar

[20] S. Ogata, J. Li, S. Yip, Science 298 (2002), p.807.

Google Scholar

[21] J.W. Jr. Morris, D. Krenn, D. Roundy and M.L. Cohen: In: 2000 Hume-Rothery Symp. in honor of A. G. Khatchaturyan Eds.: Turchi, P. E. and Gonis, A., TMS, Warrendale, PA, 2000 pp.187-207.

Google Scholar

[22] P. Šandera, J. Pokluda, L.G. Wang and M. Šob: Mater. Sci. Engng. A234-236 (1997), p.370.

Google Scholar

[23] M. Černý, P. Šandera and J. Pokluda: Czech. J. Phys. B49 (1999), p.1495.

Google Scholar

[24] M. Černý, P. Šandera and J. Pokluda: In: Materials Structure & Micromechanics of Fracture (MSMF-3), Ed. P. Šandera (VUTIUM, Brno 2001), pp.140-145.

Google Scholar

[25] M. Černý and J. Pokluda: J. Alloys Comp., accepted (2004).

Google Scholar

[26] M. Černý, J. Pokluda, P. Šandera and M. Šob: Phys. Rev. B 67 (2003), p.035116.

Google Scholar

[27] Y. Son and R. Yang: Phys. Rev. B 59 (1999), p.14220.

Google Scholar

[28] I.M. Mikhailovskii, I. Ya. Poltinin, L.I. Fedorova: Sov. Phys. Solid State 23 (1981) p.757.

Google Scholar

[29] N. H. Macmillan: In: Atomistics of Fracture. Eds. R.M. Latanision and J.R. Pickens, (Plenum Press, New York 1983), p.95.

Google Scholar

[30] P. Šandera and J. Pokluda: Scr. Metall. Mater. 29 (1993), p.1445.

Google Scholar

[31] T. Kitamura and Y. Umeno: Modelling Simul. Mater. Sci. Eng. 11 (2003), p.127.

Google Scholar

[32] A. Kelly and N.H. Macmillan: Strong Solids (Clarendon Press, Oxford 1986).

Google Scholar

[33] M. Friák, M. Šob and V. Vitek: In: Juniormat'01, Institute of Materials Engineering, Brno University of Technology, Brno 2001, pp.117-120.

Google Scholar

[34] D.M. Clatterbuck, D.C. Chrzan and Jr.J.W. Morris: Phil. Mag. Lett. 82 (2002), p.141.

Google Scholar

[35] A. Kelly, W.R. Tyson and A.H. Cottrell: Phil. Mag. 15 (1967), p.567.

Google Scholar

[36] M. Šob, M. Friák, D. Legut and V. Vitek: In Proc. 3rd Int. Alloy Conf. An Interdisciplinary Approach to the Science of Alloys in Metals, Minerals and Other Materials Systems, eds. P.E.A. Turchi and A. Gonis, Estoril/Cascais, Portugal, June 30-July 5, 2002, in print.

Google Scholar

[37] M. Černý, J. Pokluda and P. Šandera: Int. Conf. on Strength of Materials, Budapest, Hungary, Aug. 25-30, 2003; accepted for publication in Mat. Sci. Eng. A (2004).

Google Scholar

[38] M. Šob, M. Friák, D. Legut, J. Fiala, and V. Vitek, A key-note lecture presented at the 13 th Int. Conf. on Strength of Materials, Budapest, Hungary, Aug. 25-30, 2003; accepted for publication in Mat. Sci. Eng. A (2004).

Google Scholar

[39] M. Šob, L.G. Wang and V. Vitek: Phil. Mag. B 78 (1998).

Google Scholar

[24] 0. 20 〈111〉.

Google Scholar

[21] Al fcc 12. 0 11. 0.

Google Scholar

[25] 12. 1 11. 1 11. 0 13. 1 9. 2 8. 95 4. 89 〈100〉.

Google Scholar

[21] 〈111〉.

Google Scholar

[15] 〈111〉 [10, 11] 〈100〉.

Google Scholar

[31] 〈100〉.

Google Scholar

[5] 〈111〉.

Google Scholar

[5] 〈110〉.

Google Scholar

[5] 2. 27 bend.

Google Scholar

[29] 3. 50 3. 40 1. 85 〈112〉.

Google Scholar

[21] 〈112〉.

Google Scholar

[21] 〈112〉.

Google Scholar

[21] Cu fcc 29. 1 20. 9 20. 2.

Google Scholar

[25] 32. 0 36. 0 33. 0 31. 0 29. 0 9. 4 〈100〉.

Google Scholar

[7] 〈100〉.

Google Scholar

[7] 〈001〉.

Google Scholar

[9] 〈110〉.

Google Scholar

[9] 〈111〉.

Google Scholar

[9] 〈001〉.

Google Scholar

[16] 1. 25 〈111〉.

Google Scholar

[32] 2. 94 〈111〉.

Google Scholar

[29] 1. 50 〈100〉.

Google Scholar

[29] 1. 74 〈100〉.

Google Scholar

[29] 1. 59 〈110〉.

Google Scholar

[29] 1. 71 〈111〉.

Google Scholar

[29] 5. 30 4. 00 2. 65 〈112〉.

Google Scholar

[21] 〈112〉.

Google Scholar

[21] 〈112〉.

Google Scholar

[21] 0. 80 〈011〉.

Google Scholar

[32] Ag fcc 20. 4 11. 4.

Google Scholar

[25] 3. 80 〈001〉.

Google Scholar

[32] 1. 73 〈100〉.

Google Scholar

[29] 0. 71 〈011〉.

Google Scholar

[32] Nb bcc 31. 6 37. 6.

Google Scholar

[23] 13. 1 〈001〉.

Google Scholar

[12] 7. 5 〈111〉.

Google Scholar

[21] Ta bcc 42. 3 36. 4.

Google Scholar

[24] 7. 4 〈111〉.

Google Scholar

[21] Fe bcc 26. 7.

Google Scholar

[26] 12. 7 14. 2 27. 3 12. 6 〈001〉 [33, 13] 〈001〉.

Google Scholar

[34] 〈111〉 [36 13] 〈001〉.

Google Scholar

[14] 13. 1 〈111〉.

Google Scholar

[32] 3. 56 〈111〉.

Google Scholar

[32] Mo bcc 50. 4 42. 7.

Google Scholar

[24] 28. 8 〈001〉.

Google Scholar

[12] 17. 8 20. 9 16. 4 15. 6 〈111〉.

Google Scholar

[21] 〈111〉.

Google Scholar

[21] 〈111〉.

Google Scholar

[21] 〈111〉.

Google Scholar

[21] V bcc 40. 2 33. 2.

Google Scholar

[24] 7. 3 〈111〉.

Google Scholar

[21] Cr bcc 21. 0.

Google Scholar

[26] 20. 5 〈111〉.

Google Scholar

[21] W bcc 53. 1 57. 4 50. 6.

Google Scholar

[24] 28. 9 40. 1 29. 5 54. 3 〈001〉.

Google Scholar

[8] 〈111〉.

Google Scholar

[8] 〈001〉.

Google Scholar

[21] 〈110〉.

Google Scholar

[8] 24. 7 〈110〉.

Google Scholar

[35] 19. 2 18. 1 〈111〉.

Google Scholar

[21] 〈111〉.

Google Scholar

[21] Ni3Al L12 28. 1.

Google Scholar

[37] 17. 5 28. 2 〈100〉.

Google Scholar

[38] 〈111〉.

Google Scholar

[38] NiAl B2 25. 6.

Google Scholar

[37] 46. 0 25. 0 〈001〉.

Google Scholar

[39] 〈111〉.

Google Scholar